Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Luteolin, a flavonoid, has gained attention for its anti-obesity benefits. Luteolin has been shown to regulate multiple aspects of adipose tissue biology, including adipocyte differentiation and adipokine secretion. It prevents the formation of adipocytes by interfering with the expression of important transcription factors, such as PPAR-γ and C/EBP-β. Furthermore, luteolin possesses anti-inflammatory properties, inhibiting the production of pro-inflammatory adipokines, such as TNF-α and IL-6. These actions help to reduce the persistent low-grade inflammation associated with obesity, which eventually improves metabolic health. It increases the production of adiponectin, an adipokine with anti-inflammatory and antioxidant properties. This change in the adipokine level may result in metabolic benefits in obese persons. Additionally, the antioxidant activities of luteolin shield adipocytes from oxidative stress, preserving their function and contributing to overall metabolic equilibrium. This study provides scientific evidence supporting luteolin as an anti-obesity agent in depth, focusing on its mechanisms of action, experimental studies, pharmaceutical formulation studies, and other reported clinical evidence.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013307906240407093309
2024-07-25
2024-12-27
Loading full text...

Full text loading...

References

  1. SafaeiM. SundararajanE.A. DrissM. BoulilaW. Shapi’iA. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity.Comput. Biol. Med.202113610475410.1016/j.compbiomed.2021.10475434426171
    [Google Scholar]
  2. AhmedB. KonjeJ.C. The epidemiology of obesity in reproduction.Best Pract. Res. Clin. Obstet. Gynaecol.20238910234210.1016/j.bpobgyn.2023.10234237276817
    [Google Scholar]
  3. WishartD.S. GuoA. OlerE. WangF. AnjumA. PetersH. DizonR. SayeedaZ. TianS. LeeB.L. BerjanskiiM. MahR. YamamotoM. JovelJ. Torres-CalzadaC. Hiebert-GiesbrechtM. LuiV.W. VarshaviD. VarshaviD. AllenD. ArndtD. KhetarpalN. SivakumaranA. HarfordK. SanfordS. YeeK. CaoX. BudinskiZ. LiigandJ. ZhangL. ZhengJ. MandalR. KaruN. DambrovaM. SchiöthH.B. GreinerR. GautamV. HMDB 5.0: the human metabolome database for 2022.Nucleic Acids Res.202250D1D622D63110.1093/nar/gkab106234986597
    [Google Scholar]
  4. Abdel-HamidT.K. Modeling the dynamics of human energy regulation and its implications for obesity treatment.Syst. Dyn. Rev.200218443147110.1002/sdr.240
    [Google Scholar]
  5. MohajanD. MohajanH.K. Obesity and its related diseases: A new escalating alarming in global health.J. Innov. Medi. Res.202323122310.56397/JIMR/2023.03.04
    [Google Scholar]
  6. MulitaF. Long-term nutritional deficiencies following sleeve gastrectomy: a 6-year single-centre retrospective study.Menopause Review/Przegląd Menopauzalny2021204170176
    [Google Scholar]
  7. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.11866133121986
    [Google Scholar]
  8. D’InnocenzoS. BiagiC. LanariM. Obesity and the Mediterranean diet: a review of evidence of the role and sustainability of the Mediterranean diet.Nutrients2019116130610.3390/nu1106130631181836
    [Google Scholar]
  9. BeheraP.K. DeviS. MittalN. Therapeutic potential of gallic acid in obesity: Considerable shift!Obes. Med.20233710047310.1016/j.obmed.2022.100473
    [Google Scholar]
  10. SonJ.W. KimS. Comprehensive review of current and upcoming anti-obesity drugs.Diabetes Metab. J.202044680281810.4093/dmj.2020.025833389955
    [Google Scholar]
  11. Shaik Mohamed SayedU.F. MoshawihS. GohH.P. KifliN. GuptaG. SinghS.K. ChellappanD.K. DuaK. HermansyahA. SerH.L. MingL.C. GohB.H. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management.Front. Pharmacol.202314118293710.3389/fphar.2023.118293737408757
    [Google Scholar]
  12. CasatiA. SedefovR. Pfeiffer-GerschelT. Misuse of medicines in the European Union: a systematic review of the literature.Eur. Addict. Res.201218522824510.1159/00033702822572594
    [Google Scholar]
  13. BowmanS. MoonesingheS. Postoperative complications in the obese patient and their management.Oxford Textbook of Anaesthesia for the Obese Patient2021193
    [Google Scholar]
  14. ChanY. NgS.W. TanJ.Z.X. GuptaG. NegiP. ThangaveluL. BalusamyS.R. PerumalsamyH. YapW.H. SinghS.K. CarusoV. DuaK. ChellappanD.K. Natural products in the management of obesity: Fundamental mechanisms and pharmacotherapy.S. Afr. J. Bot.202114317619710.1016/j.sajb.2021.07.026
    [Google Scholar]
  15. MrduljašN. KrešićG. BilušićT. Polyphenols: Food sources and health benefits.Functional food-improve health through adequate food2017234110.5772/intechopen.68862
    [Google Scholar]
  16. JakabJ. MiškićB. MikšićŠ. JuranićB. ĆosićV. SchwarzD. VčevA. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products.Diabetes Metab. Syndr. Obes.202114678310.2147/DMSO.S28118633447066
    [Google Scholar]
  17. FerrazC.R. CarvalhoT.T. ManchopeM.F. ArteroN.A. Rasquel-OliveiraF.S. FattoriV. CasagrandeR. VerriW.A.Jr Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development.Molecules202025376210.3390/molecules2503076232050623
    [Google Scholar]
  18. DeviS. Targeting cardiovascular risk factors with eugenol: An anti-inflammatory perspective.Inflammopharmacology20243213071738085446
    [Google Scholar]
  19. ManzoorM.F. AhmadN. AhmedZ. SiddiqueR. ZengX.A. RahamanA. Muhammad AadilR. WahabA. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives.J. Food Biochem.2019439e1297410.1111/jfbc.1297431489656
    [Google Scholar]
  20. Ferrer-GallegoR. García-EstévezI. DueñasM. RamisD. RossellóJ.A. Phenolic metabolites from 5,000-year-old coprolites of Myotragus balearicus, an extinct insular bovid.Quat. Int.202055414314910.1016/j.quaint.2020.07.008
    [Google Scholar]
  21. MushtaqM. AnwarF. A centum of valuable plant bioactives.Academic Press2021
    [Google Scholar]
  22. PolyaG. Biochemical targets of plant bioactive compounds: a pharmacological reference guide to sites of action and biological effects.CRC press200310.1201/9780203013717
    [Google Scholar]
  23. NisarM. Glycosidic derivatives of flavonoids.In: Phytochemistry and Classification of Glycosidic Derivatives of Flavonoids20205784
    [Google Scholar]
  24. FrankeK. DjikengF.T. EsatbeyogluT. Influence of frying, baking and cooking on food bioactives.Retention of Bioactives in Food Processing.Springer20229312110.1007/978‑3‑030‑96885‑4_3
    [Google Scholar]
  25. SangeethaK.S. UmamaheswariS ReddyCUM KalkuraSN Flavonoids: Therapeutic potential of natural pharmacological agents.Int. J. Pharm. Sci. Res.20167103924
    [Google Scholar]
  26. NabaviS.F. BraidyN. GortziO. Sobarzo-SanchezE. DagliaM. Skalicka-WoźniakK. NabaviS.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res. Bull.2015119Pt A11110.1016/j.brainresbull.2015.09.00226361743
    [Google Scholar]
  27. YasudaM.T. FujitaK. HosoyaT. ImaiS. ShimoiK. Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells.J. Agric. Food Chem.201563357693769910.1021/acs.jafc.5b0023225843231
    [Google Scholar]
  28. ShimoiK. OkadaH. FurugoriM. GodaT. TakaseS. SuzukiM. HaraY. YamamotoH. KinaeN. Intestinal absorption of luteolin and luteolin 7- O -β-glucoside in rats and humans.FEBS Lett.1998438322022410.1016/S0014‑5793(98)01304‑09827549
    [Google Scholar]
  29. WangZ. ZengM. WangZ. QinF. ChenJ. HeZ. Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism.J. Agric. Food Chem.20216951441145410.1021/acs.jafc.0c0808533522240
    [Google Scholar]
  30. WangL. ChenQ. ZhuL. LiQ. ZengX. LuL. HuM. WangX. LiuZ. Metabolic disposition of luteolin is mediated by the interplay of UDP-glucuronosyltransferases and catechol-O-methyltransferases in rats.Drug Metab. Dispos.201745330631510.1124/dmd.116.07361928031430
    [Google Scholar]
  31. DengC. GaoC. TianX. ChaoB. WangF. ZhangY. ZouJ. LiuD. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile.J. Funct. Foods20173533234010.1016/j.jff.2017.05.056
    [Google Scholar]
  32. HayasakaN. ShimizuN. KomodaT. MohriS. TsushidaT. EitsukaT. MiyazawaT. NakagawaK. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects.J. Agric. Food Chem.20186643113201132910.1021/acs.jafc.8b0327330280574
    [Google Scholar]
  33. ZhangY. LiL. LinL. LiuJ. ZhangZ. XuD. XiangF. Pharmacokinetics, tissue distribution, and excretion of salidroside in rats.Planta Med.201379151429143310.1055/s‑0033‑135080724043591
    [Google Scholar]
  34. OwumiS.E. LewuD.O. ArunsiU.O. OyelereA.K. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis.Hum. Exp. Toxicol.202140101656167210.1177/0960327121100617133827303
    [Google Scholar]
  35. WitM. Trujillo-VieraJ. StrohmeyerA. KlingensporM. HankirM. SumaraG. When fat meets the gut—focus on intestinal lipid handling in metabolic health and disease.EMBO Mol. Med.2022145e1474210.15252/emmm.20211474235437952
    [Google Scholar]
  36. MichalskiM-C. CouedeloL. PenhoatA. VaysseC. VorsC. Bioavailability and metabolism of dietary lipids. Lipids and Edible Oils.Elsevier20204592
    [Google Scholar]
  37. ReeskampL.F. MeessenE.C.E. GroenA.K. Transintestinal cholesterol excretion in humans.Curr. Opin. Lipidol.2018291101710.1097/MOL.000000000000047329189433
    [Google Scholar]
  38. RufinoA.T. CostaV.M. CarvalhoF. FernandesE. Flavonoids as antiobesity agents: A review.Med. Res. Rev.202141155658510.1002/med.2174033084093
    [Google Scholar]
  39. TaheriY Sharifi-RadJ AntikaG. Paving luteolin therapeutic potentialities and agro- food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits.Oxidative Medicine and Cellular Longevity2021202110.1155/2021/1987588
    [Google Scholar]
  40. ParkH.S. LeeK. KimS.H. HongM.J. JeongN.J. KimM.S. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice.J. Food Biochem.2020449e1335810.1111/jfbc.1335832598492
    [Google Scholar]
  41. PetroglouD. KanellosI. SavopoulosC. KaiafaG. ChrysochoouA. SkantzisP. DaiosS. HatzitoliosA.I. GiannoglouG. The LDL-receptor and its molecular properties: From theory to novel biochemical and pharmacological approaches in reducing LDL-cholesterol.Curr. Med. Chem.202027231733310.2174/092986732566618060411481929865996
    [Google Scholar]
  42. SakumaS. YabuuchiM. YoshizumiA. OkajimaY. FujimotoY. OkuhiraK. Comparative effects of luteolin and quercetin on adipogenesis in 3T3-L1 cells.J. Pharm. Nutr. Sci.202111657210.29169/1927‑5951.2021.11.09
    [Google Scholar]
  43. AlkholifiF.K. DeviS. YusufogluH.S. AlamA. The cardioprotective effect of corosolic acid in the diabetic rats: a possible mechanism of the PPAR-γ pathway.Molecules202328392910.3390/molecules2803092936770602
    [Google Scholar]
  44. ZhangX. ZhangQ-X. WangX. ZhangL. QuW. BaoB. LiuC-A. LiuJ. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1α pathway-mediated mechanism.Int. J. Obes.201640121841184910.1038/ijo.2016.10827377953
    [Google Scholar]
  45. LiuY. FuX. LanN. LiS. ZhangJ. WangS. LiC. ShangY. HuangT. ZhangL. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.Behav. Brain Res.201426717818810.1016/j.bbr.2014.02.04024667364
    [Google Scholar]
  46. ChenL. HeT. HanY. ShengJ.Z. JinS. JinM.W. Pentamethylquercetin improves adiponectin expression in differentiated 3T3-L1 cells via a mechanism that implicates PPARγ together with TNF-α and IL-6.Molecules20111675754576810.3390/molecules1607575421734632
    [Google Scholar]
  47. ZhangZ. WangJ. LinY. ChenJ. LiuJ. ZhangX. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues.Crit. Rev. Food Sci. Nutr.202211510.1080/10408398.2022.213825736300856
    [Google Scholar]
  48. AodahA.H. DeviS. AlkholifiF.K. YusufogluH.S. FoudahA.I. AlamA. Effects of taraxerol on oxidative and inflammatory mediators in isoproterenol-induced cardiotoxicity in an animal model.Molecules20232810408910.3390/molecules2810408937241830
    [Google Scholar]
  49. GentileD. FornaiM. PellegriniC. ColucciR. BenvenutiL. DurantiE. MasiS. CarpiS. NieriP. NericcioA. GarelliF. VirdisA. PistelliL. BlandizziC. AntonioliL. Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity.Front. Pharmacol.20189109410.3389/fphar.2018.0109430319424
    [Google Scholar]
  50. MartínM.Á. RamosS. Dietary flavonoids and insulin signaling in diabetes and obesity.Cells2021106147410.3390/cells1006147434208379
    [Google Scholar]
  51. DeqiuZ. KangL. JialiY. BaolinL. GaolinL. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium.Biochimie201193350651210.1016/j.biochi.2010.11.00221081149
    [Google Scholar]
  52. KimJ.W. ShinS.K. KwonE.Y. Luteolin protects against obese sarcopenia in mice with high-fat diet-induced obesity by ameliorating inflammation and protein degradation in muscles.Mol. Nutr. Food Res.2023676220072910.1002/mnfr.20220072936708177
    [Google Scholar]
  53. PrustyD. ParkB.H. DavisK.E. FarmerS.R. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes.J. Biol. Chem.200227748462264623210.1074/jbc.M20777620012270934
    [Google Scholar]
  54. LeeW. SongG. BaeH. Suppressive effect of fraxetin on adipogenesis and reactive oxygen species production in 3T3-L1 cells by regulating mapk signaling pathways.Antioxidants20221110189310.3390/antiox1110189336290616
    [Google Scholar]
  55. McArdleM.A. FinucaneO.M. ConnaughtonR.M. McMorrowA.M. RocheH.M. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies.Front. Endocrinol.201345210.3389/fendo.2013.0005223675368
    [Google Scholar]
  56. AlharthyK. BalahaM. DeviS. AltharawiA. YusufogluH. AldossariR. AlamA. di GiacomoV. Ameliorative effects of isoeugenol and eugenol against impaired nerve function and inflammatory and oxidative mediators in diabetic neuropathic rats.Biomedicines2023114120310.3390/biomedicines1104120337189822
    [Google Scholar]
  57. KwonE.Y. ChoiM.S. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice.Nutrients20181010141510.3390/nu1010141530282902
    [Google Scholar]
  58. KwonE.Y. KimS. ChoiM.S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity.Nutrients201810897910.3390/nu1008097930060507
    [Google Scholar]
  59. YanaiH. YoshidaH. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives.Int. J. Mol. Sci.2019205119010.3390/ijms2005119030857216
    [Google Scholar]
  60. QueirozM. LeandroA. AzulL. FigueirinhaA. SeiçaR. SenaC.M. Luteolin improves perivascular adipose tissue profile and vascular dysfunction in goto-kakizaki rats.Int. J. Mol. Sci.202122241367110.3390/ijms22241367134948468
    [Google Scholar]
  61. ShehnazS.I. RoyA. VijayaraghavanR. SivanesanS. Luteolin mitigates diabetic dyslipidemia in rats by modulating ACAT-2, PPARα, SREBP-2 proteins, and oxidative stress.Appl. Biochem. Biotechnol.202319584893491410.1007/s12010‑023‑04544‑437103741
    [Google Scholar]
  62. OhJ.M. ChunS. Ginsenoside CK inhibits the early stage of adipogenesis via the AMPK, MAPK, and AKT signaling pathways.Antioxidants20221110189010.3390/antiox1110189036290613
    [Google Scholar]
  63. WenX. ZhangB. WuB. XiaoH. LiZ. LiR. XuX. LiT. Signaling pathways in obesity: mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227129810.1038/s41392‑022‑01149‑x36031641
    [Google Scholar]
  64. JockenJ.W.E. BlaakE.E. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity.Physiol. Behav.200894221923010.1016/j.physbeh.2008.01.00218262211
    [Google Scholar]
  65. CerkI.K. WechselbergerL. ObererM. Adipose triglyceride lipase regulation: an overview.Curr. Protein Pept. Sci.201819222123328925902
    [Google Scholar]
  66. WangS. SoniK.G. SemacheM. CasavantS. FortierM. PanL. MitchellG.A. Lipolysis and the integrated physiology of lipid energy metabolism.Mol. Genet. Metab.200895311712610.1016/j.ymgme.2008.06.01218762440
    [Google Scholar]
  67. HasanA.U. OhmoriK. HashimotoT. KamitoriK. YamaguchiF. RahmanA. TokudaM. KoboriH. PPARγ activation mitigates glucocorticoid receptor-induced excessive lipolysis in adipocytes via homeostatic crosstalk.J. Cell. Biochem.201811964627463510.1002/jcb.2663129266408
    [Google Scholar]
  68. FrühbeckG. Méndez-GiménezL. Fernández-FormosoJ.A. FernándezS. RodríguezA. Regulation of adipocyte lipolysis.Nutr. Res. Rev.2014271639310.1017/S095442241400002X24872083
    [Google Scholar]
  69. KimS.J. TangT. AbbottM. ViscarraJ.A. WangY. SulH.S. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue.Mol. Cell. Biol.201636141961197610.1128/MCB.00244‑1627185873
    [Google Scholar]
  70. SchreiberR. HoferP. TaschlerU. VosholP.J. RechbergerG.N. KotzbeckP. JaegerD. Preiss-LandlK. LordC.C. BrownJ.M. HaemmerleG. ZimmermannR. Vidal-PuigA. ZechnerR. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity.Proc. Natl. Acad. Sci. USA201511245138501385510.1073/pnas.151600411226508640
    [Google Scholar]
  71. TanabeH. Beneficial effects of plant polyphenols on obesity.Obes. Control Ther.20174116
    [Google Scholar]
  72. AlvesN. Studies on mechanistic role of natural bioactive compounds in the management of obesity an overview.The Open Nutraceuticals Journal2012519320610.2174/1876396001205010193
    [Google Scholar]
  73. TanJ. YadavM.K. DeviS. KumarM. Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons.Acta Pharm.202272112313410.2478/acph‑2022‑000236651531
    [Google Scholar]
  74. BerthoudH.R. Multiple neural systems controlling food intake and body weight.Neurosci. Biobehav. Rev.200226439342810.1016/S0149‑7634(02)00014‑312204189
    [Google Scholar]
  75. VohraM.S. BenchoulaK. SerpellC.J. HwaW.E. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity.Eur. J. Pharmacol.202291517461110.1016/j.ejphar.2021.17461134798121
    [Google Scholar]
  76. MakkarR. BehlT. BungauS. ZenginG. MehtaV. KumarA. UddinM.S. AshrafG.M. Abdel-DaimM.M. AroraS. OanceaR. Nutraceuticals in neurological disorders.Int. J. Mol. Sci.20202112442410.3390/ijms2112442432580329
    [Google Scholar]
  77. OhC.M. NamkungJ. GoY. ShongK.E. KimK. KimH. ParkB.Y. LeeH.W. JeonY.H. SongJ. ShongM. YadavV.K. KarsentyG. KajimuraS. LeeI.K. ParkS. KimH. Regulation of systemic energy homeostasis by serotonin in adipose tissues.Nat. Commun.201561679410.1038/ncomms779425864946
    [Google Scholar]
  78. LiuJ. CaoJ. LiY. GuoF. Beneficial flavonoid in foods and anti-obesity effect.Food Rev. Int.202339156060010.1080/87559129.2021.1923730
    [Google Scholar]
  79. FariaA. Pereira-WilsonC. NegrãoR. The relevance of polyphenols in obesity therapy.Understanding Obesity: From its Causes to impact on Life2020127130710.2174/9789811442636120010014
    [Google Scholar]
  80. BehlT. MakkarR. SehgalA. SharmaN. SinghS. AlbrattyM. NajmiA. MerayaA.M. BungauS.G. Insights into the explicit protective activity of herbals in management of neurodegenerative and cerebrovascular disorders.Molecules20222715497010.3390/molecules2715497035956919
    [Google Scholar]
  81. LinY. YangN. BaoB. WangL. ChenJ. LiuJ. Luteolin reduces fat storage in Caenorhabditis elegans by promoting the central serotonin pathway.Food Funct.202011173074010.1039/C9FO02095K31912839
    [Google Scholar]
  82. ZhangX. LiX. FangH. GuoF. LiF. ChenA. HuangS. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers.Nutr. Metab.20191614710.1186/s12986‑019‑0370‑731346342
    [Google Scholar]
  83. DesjardinsE.M. SteinbergG.R. Emerging role of AMPK in brown and beige adipose tissue (BAT): implications for obesity, insulin resistance, and type 2 diabetes.Curr. Diab. Rep.201818108010.1007/s11892‑018‑1049‑630120579
    [Google Scholar]
  84. WicksteedB. DicksonL.M. PKA differentially regulates adipose depots to control energy expenditure.Endocrinology2017158346446610.1210/en.2017‑0003828430917
    [Google Scholar]
  85. TabuchiC. SulH.S. Signaling pathways regulating thermogenesis.Front. Endocrinol.20211259502010.3389/fendo.2021.59502033841324
    [Google Scholar]
  86. MachadoS.A. Pasquarelli-do-NascimentoG. da SilvaD.S. FariasG.R. de Oliveira SantosI. BaptistaL.B. MagalhãesK.G. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases.Nutr. Metab.20221916110.1186/s12986‑022‑00694‑036068578
    [Google Scholar]
  87. ManzoorM.F. Food based phytochemical luteolin their derivatives, sources and medicinal benefits.Int. J. Agric. Life Sci. IJAL20173111
    [Google Scholar]
  88. ZhangZ. YangD. XiangJ. ZhouJ. CaoH. CheQ. BaiY. GuoJ. SuZ. Non-shivering thermogenesis signalling regulation and potential therapeutic applications of brown adipose tissue.Int. J. Biol. Sci.202117112853287010.7150/ijbs.6035434345212
    [Google Scholar]
  89. GuoX. CaoX. FangX. GuoA. LiE. Inhibitory effects of fermented Ougan ( Citrus reticulata cv. Suavissima ) juice on high-fat diet-induced obesity associated with white adipose tissue browning and gut microbiota modulation in mice.Food Funct.202112199300931410.1039/D0FO03423A34606525
    [Google Scholar]
  90. VinnicombeK.R.T. VolkoffH. Possible role of transcription factors (BSX, NKX2.1, IRX3 and SIRT1) in the regulation of appetite in goldfish (Carassius auratus).Comp. Biochem. Physiol. A Mol. Integr. Physiol.202226811118910.1016/j.cbpa.2022.11118935307341
    [Google Scholar]
  91. SalazarJ. CanoC. PérezJ.L. CastroA. DíazM.P. GarridoB. CarrasqueroR. ChacínM. VelascoM. D´MarcoL. Rojas-QuinteroJ. BermúdezV. Role of dietary polyphenols in adipose tissue browning: A narrative review.Curr. Pharm. Des.202026354444446010.2174/138161282666620070121142232611294
    [Google Scholar]
  92. KhoramipourK. ChamariK. HekmatikarA.A. ZiyaiyanA. TaherkhaniS. ElguindyN.M. BragazziN.L. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition.Nutrients2021134118010.3390/nu1304118033918360
    [Google Scholar]
  93. ZhangZ.-H. Luteolin confers cerebroprotection after subarachnoid hemorrhage by suppression of NLPR3 inflammasome activation through Nrf2-dependent pathway.Oxidative Medicine and Cellular Longevity2021202110.1155/2021/5838101
    [Google Scholar]
  94. LiM. LiQ. ZhaoQ. ZhangJ. LinJ. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences.Int. J. Clin. Exp. Pathol.201589101121012026617718
    [Google Scholar]
  95. LiuJ. LiuJ. TongX. PengW. WeiS. SunT. WangY. ZhangB. LiW. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis.Drug Des. Devel. Ther.2021153255327610.2147/DDDT.S31978634349502
    [Google Scholar]
  96. ZhangL. HanY.J. ZhangX. WangX. BaoB. QuW. LiuJ. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages.Diabetologia201659102219222810.1007/s00125‑016‑4039‑827377644
    [Google Scholar]
  97. YaoX. JiangW. YuD. YanZ. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway.Food Funct.201910270371210.1039/C8FO02013B30663726
    [Google Scholar]
  98. XuN. ZhangL. DongJ. ZhangX. ChenY.G. BaoB. LiuJ. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice.Mol. Nutr. Food Res.20145861258126810.1002/mnfr.20130083024668788
    [Google Scholar]
  99. KwonE.Y. JungU.J. ParkT. YunJ.W. ChoiM.S. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.Diabetes20156451658166910.2337/db14‑063125524918
    [Google Scholar]
  100. ZangY. IgarashiK. LiY. Anti-diabetic effects of luteolin and luteolin-7- O -glucoside on KK- A y mice.Biosci. Biotechnol. Biochem.20168081580158610.1080/09168451.2015.111692827170065
    [Google Scholar]
  101. LiJ. InoueJ. ChoiJ.M. NakamuraS. YanZ. FushinobuS. KamadaH. KatoH. HashidumeT. ShimizuM. SatoR. Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α.J. Biol. Chem.201529039240212403510.1074/jbc.M115.64520026272613
    [Google Scholar]
  102. Fernández-FernándezA.M. DumayE. LazennecF. MiguesI. HeinzenH. LemaP. López-PedemonteT. Medrano-FernandezA. Antioxidant, antidiabetic, and antiobesity properties, TC7-Cell cytotoxicity and uptake of achyrocline satureioides (marcela) conventional and high pressure-assisted extracts.Foods202110489310.3390/foods1004089333921665
    [Google Scholar]
  103. LiuW. WangL. ZhangJ. Peanut shell extract and luteolin regulate lipid metabolism and induce browning in 3T3-L1 adipocytes.Foods20221117269610.3390/foods1117269636076880
    [Google Scholar]
  104. LiJ. LiX. XuW. WangS. HuZ. ZhangQ. DengX. WangJ. ZhangJ. GuoC. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/ mTOR /p70S6K and TGFβ/Smad signalling pathways.Liver Int.20153541222123310.1111/liv.1263825040634
    [Google Scholar]
  105. KarthikaC. AppuA.P. AkterR. RahmanM.H. TagdeP. AshrafG.M. Abdel-DaimM.M. HassanS.S. AbidA. BungauS. Potential innovation against Alzheimer’s disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery.Environ. Sci. Pollut. Res. Int.2022298109501096510.1007/s11356‑021‑17830‑735000160
    [Google Scholar]
  106. RakariyathamK. WuX. TangZ. HanY. WangQ. XiaoH. Synergism between luteolin and sulforaphane in anti-inflammation.Food Funct.20189105115512310.1039/C8FO01352G30206627
    [Google Scholar]
  107. LeeY.J. JeongH.Y. KimY.B. LeeY.J. WonS.Y. ShimJ.H. ChoM.K. NamH.S. LeeS.H. Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphane-treated human mesothelioma MSTO-211H cells.Food Chem. Toxicol.201250211612310.1016/j.fct.2011.10.03522019695
    [Google Scholar]
  108. ZhangL. VirgousC. SiH. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals.J. Nutr. Biochem.201969193010.1016/j.jnutbio.2019.03.00931048206
    [Google Scholar]
  109. Singh TuliH. RathP. ChauhanA. SakK. AggarwalD. ChoudharyR. SharmaU. VashishthK. SharmaS. KumarM. YadavV. SinghT. YererM.B. HaqueS. Luteolin, a potent anticancer compound: from chemistry to cellular interactions and synergetic perspectives.Cancers20221421537310.3390/cancers1421537336358791
    [Google Scholar]
  110. BuchmannD. SchultzeN. BorchardtJ. BöttcherI. SchauflerK. GuentherS. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens.J. Appl. Microbiol.2022132294996310.1111/jam.1525334365707
    [Google Scholar]
  111. XiaoB. QinY. YingC. MaB. WangB. LongF. WangR. FangL. WangY. Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model.Mol. Med. Rep.20171669375938210.3892/mmr.2017.778429039580
    [Google Scholar]
  112. LuoY. ChenS. ZhouJ. ChenJ. TianL. GaoW. ZhangY. MaA. LiL. ZhouZ. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation.J. Drug Deliv. Sci. Technol.20195024825410.1016/j.jddst.2019.02.004
    [Google Scholar]
  113. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics1212119433317067
    [Google Scholar]
  114. KhursheedR. SinghS.K. WadhwaS. GulatiM. KapoorB. JainS.K. GowthamarajanK. ZacconiF. ChellappanD.K. GuptaG. JhaN.K. GuptaP.K. DuaK. Development of mushroom polysaccharide and probiotics based solid self-nanoemulsifying drug delivery system loaded with curcumin and quercetin to improve their dissolution rate and permeability: State of the art.Int. J. Biol. Macromol.202118974475710.1016/j.ijbiomac.2021.08.17034464640
    [Google Scholar]
  115. ShimulI.M. MoshikurR.M. MinamihataK. MoniruzzamanM. KamiyaN. GotoM. Choline oleate based micellar system as a new approach for Luteolin formulation: Antioxidant, antimicrobial, and food preservation properties evaluation.J. Mol. Liq.202236512015110.1016/j.molliq.2022.120151
    [Google Scholar]
  116. ZhangN. ZhangF. XuS. YunK. WuW. PanW. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability.J. Drug Deliv. Sci. Technol.20205810178310.1016/j.jddst.2020.101783
    [Google Scholar]
  117. ImamS.S. AlshehriS. AltamimiM.A. HussainA. AlyahyaK.H. MahdiW.A. QamarW. Formulation and evaluation of luteolin-loaded nanovesicles: In vitro physicochemical characterization and viability assessment.ACS Omega2022711048105610.1021/acsomega.1c0562835036768
    [Google Scholar]
  118. ShangJ. YangJ. DengQ. ZhouM. Nano-scale drug delivery systems for luteolin: advancements and applications.J. Mater. Chem. B Mater. Biol. Med.20231147111981121610.1039/D3TB01753B37986608
    [Google Scholar]
  119. ChavdaV.P. PatelA.B. MistryK.J. SutharS.F. WuZ.X. ChenZ.S. HouK. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges.Front. Oncol.20221286765510.3389/fonc.2022.86765535425710
    [Google Scholar]
  120. PatilM. HussainA. AltamimiM.A. AshiqueS. HaiderN. FarukA. KhurooT. SherikarA. SiddiqueM.U.M. AnsariA. BarbhuiyaT.K. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Biol. Metastasis2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  121. ConteR. MarturanoV. PelusoG. CalarcoA. CerrutiP. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds.Int. J. Mol. Sci.201718470910.3390/ijms1804070928350317
    [Google Scholar]
  122. ShindeP. AgravalH. SrivastavA.K. YadavU.C.S. KumarU. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking.Int. J. Pharm.202058811979510.1016/j.ijpharm.2020.11979532853712
    [Google Scholar]
  123. TungN.T. TranC.S. NguyenH.A. NguyenT.D. ChiS.C. PhamD.V. BuiQ.D. HoX.H. Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin.Int. J. Pharm.2019555637610.1016/j.ijpharm.2018.11.03630448315
    [Google Scholar]
  124. KhursheedR. SinghS.K. KumarB. WadhwaS. GulatiM. AA. AwasthiA. VishwasS. KaurJ. CorrieL. K RA. KumarR. JhaN.K. GuptaP.K. ZacconiF. DuaK. ChitranshiN. MustafaG. KumarA. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats.Int. J. Pharm.202261212130610.1016/j.ijpharm.2021.12130634813906
    [Google Scholar]
  125. AnsariM.J. AlshetailiA. AldayelI.A. AlablanF.M. AlsulaysB. AlshahraniS. AlalaiweA. AnsariM.N. Ur RehmanN. ShakeelF. Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin.J. Taibah Univ. Sci.20201411386140110.1080/16583655.2020.1812269
    [Google Scholar]
  126. ShimulI.M. MoshikurR.M. MinamihataK. MoniruzzamanM. KamiyaN. GotoM. Amino acid ester based phenolic ionic liquids as a potential solvent for the bioactive compound luteolin: Synthesis, characterization, and food preservation activity.J. Mol. Liq.202234911810310.1016/j.molliq.2021.118103
    [Google Scholar]
  127. KazmiI. Al-AbbasiF.A. NadeemM.S. AltaybH.N. AlshehriS. ImamS.S. Formulation, optimization and evaluation of luteolin-loaded topical nanoparticulate delivery system for the skin cancer.Pharmaceutics20211311174910.3390/pharmaceutics1311174934834164
    [Google Scholar]
  128. CunhaC. Daniel-da-SilvaA.L. OliveiraH. Drug delivery systems and flavonoids: current knowledge in melanoma treatment and future perspectives.Micromachines20221311183810.3390/mi1311183836363859
    [Google Scholar]
  129. LiH. WangD. LiuC. ZhuJ. FanM. SunX. WangT. XuY. CaoY. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin.Food Hydrocoll.20198734235110.1016/j.foodhyd.2018.08.002
    [Google Scholar]
  130. LiR. ZhangZ. ChenJ. LiH. TangH. Investigating of zein-gum arabic-tea polyphenols ternary complex nanoparticles for luteolin encapsulation: Fabrication, characterization, and functional performance.Int. J. Biol. Macromol.2023242Pt 312505910.1016/j.ijbiomac.2023.12505937244348
    [Google Scholar]
  131. ShindeP. AgravalH. SinghA. YadavU.C.S. KumarU. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy.J. Drug Deliv. Sci. Technol.20195236937810.1016/j.jddst.2019.04.044
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013307906240407093309
Loading
/content/journals/cnf/10.2174/0115734013307906240407093309
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adipocytes; anti-inflammatory; antioxidant; lipolysis; Luteolin; obesity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test