Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

The reduction in sugar consumption has led to increased use of low-calorie artificial sweeteners. This coincides with an increase in infertility rates, suggesting that low-calorie artificial sweeteners may negatively affect reproductive health. Low-calorie sweeteners may affect oxidative stress, glucose regulation, and the microbiota, which are associated with reproductive health. Therefore, a review was conducted to examine the effects of commonly used low-calorie sweeteners on reproductive health through potential biological mechanisms. This review addresses the effects of low-calorie sweeteners in a wide range of areas, such as infertility, pregnancy and neonatal health, and early menarche. Recent studies have indicated potential adverse effects of artificial sweeteners on reproductive health. Research has examined the potential impacts of artificial sweeteners on various parameters, such as hormone levels, sperm quality, sperm motility, ovarian function, and pregnancy outcomes. However, the findings of current studies are inconsistent, and these disparate results may stem from metabolic differences among different types of artificial sweeteners, variations in research methodologies, diversity in sample sizes, and fluctuations in study populations. Therefore, further research is needed to comprehensively understand the effects of artificial sweeteners on reproductive health.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013315621240802055207
2024-08-16
2025-07-08
Loading full text...

Full text loading...

References

  1. MooradianA.D. SmithM. TokudaM. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review.Clin. Nutr. ESPEN2017181810.1016/j.clnesp.2017.01.00429132732
    [Google Scholar]
  2. Bridge-ComerP.E. VickersM.H. Morton-JonesJ. SpadaA. RongJ. ReynoldsC.M. Maternal intake of fructose or artificial sweetener during pregnancy and lactation has persistent effects on metabolic and reproductive health of dams post-weaning.J. Dev. Orig. Health Dis.202213564264910.1017/S204017442200002235322784
    [Google Scholar]
  3. SylvetskyA. C. JinY. ClarkE. J. WelshJ. A. RotherK. I. TalegawkarS. A. Consumption of Low-Calorie sweeteners among children and adults in the United States.J Acad Nutr Diet20171173441448.e210.1016/j.jand.2016.11.004
    [Google Scholar]
  4. IbrahimO.O. High intensity sweeteners chemicals structure, properties and applications.Nat Sci Disc201514889410.20863/nsd.97334
    [Google Scholar]
  5. JiangJ. LiuS. JamalT. DingT. QiL. LvZ. YuD. ShiF. Effects of dietary sweeteners supplementation on growth performance, serum biochemicals, and jejunal physiological functions of broiler chickens.Poult. Sci.20209983948395810.1016/j.psj.2020.03.05732731982
    [Google Scholar]
  6. PearlmanM. ObertJ. CaseyL. The association between artificial sweeteners and obesity.Curr. Gastroenterol. Rep.201719126410.1007/s11894‑017‑0602‑929159583
    [Google Scholar]
  7. LohnerS. ToewsI. MeerpohlJ.J. Health outcomes of non-nutritive sweeteners:Analysis of the research landscape.Nutr. J.20171615510.1186/s12937‑017‑0278‑x28886707
    [Google Scholar]
  8. WalboltJ. KohY. Non-nutritive sweeteners and their associations with obesity and type 2 diabetes.J. Obes. Metab. Syndr.202029211412310.7570/jomes1907932482914
    [Google Scholar]
  9. PangM.D. GoossensG.H. BlaakE.E. The impact of artificial sweeteners on body weight control and glucose homeostasis.Front. Nutr.2021759834010.3389/fnut.2020.59834033490098
    [Google Scholar]
  10. UçarA. YılmazS. YılmazŞ. KılıçM.S. A research on the genotoxicity of stevia in human lymphocytes.Drug Chem. Toxicol.201841222122410.1080/01480545.2017.134913528738695
    [Google Scholar]
  11. Orellana-PaucarA.M. Steviol Glycosides from Stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects.Molecules2023283125810.3390/molecules2803125836770924
    [Google Scholar]
  12. PeteliukV. RybchukL. BayliakM. StoreyK.B. LushchakO. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks.EXCLI J.2021201412143034803554
    [Google Scholar]
  13. RotherK.I. ConwayE.M. SylvetskyA.C. How non-nutritive sweeteners influence hormones and health.Trends Endocrinol. Metab.201829745546710.1016/j.tem.2018.04.01029859661
    [Google Scholar]
  14. WangQ.P. BrowmanD. HerzogH. NeelyG.G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice.PLoS One2018137e019908010.1371/journal.pone.019908029975731
    [Google Scholar]
  15. PepinoM.Y. Metabolic effects of non-nutritive sweeteners.Physiol. Behav.2015152Pt B45045510.1016/j.physbeh.2015.06.02426095119
    [Google Scholar]
  16. HillS.E. ProkoschM.L. MorinA. RodehefferC.D. The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction.Appetite201483828810.1016/j.appet.2014.08.00325128835
    [Google Scholar]
  17. SuezJ. KoremT. ZeeviD. Zilberman-SchapiraG. ThaissC. A. MazaO. IsraeliD. ZmoraN. GiladS. WeinbergerA. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.Nature20145147521181186
    [Google Scholar]
  18. ChiL. BianX. GaoB. TuP. LaiY. RuH. LuK. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice.Molecules201823236710.3390/molecules2302036729425148
    [Google Scholar]
  19. AshokI. PoornimaP.S. WankharD. RavindranR. SheeladeviR. Oxidative stress evoked damages on rat sperm and attenuated antioxidant status on consumption of aspartame.Int. J. Impot. Res.201729416417010.1038/ijir.2017.1728446800
    [Google Scholar]
  20. Al-EisaR.A. Al-SalmiF.A. HamzaR.Z. El-ShenawyN.S. Role of L-carnitine in protection against the cardiac oxidative stress induced by aspartame in Wistar albino rats.PLoS One20181311e020491310.1371/journal.pone.020491330403670
    [Google Scholar]
  21. ChenY.C. YehY.C. LinY.F. AuH.K. HsiaS.M. ChenY.H. HsiehR.H. Aspartame consumption, mitochondrial disorder-induced impaired ovarian function, and infertility risk.Int. J. Mol. Sci.202223211274010.3390/ijms23211274036361530
    [Google Scholar]
  22. SettiA.S. BragaD.P.A.F. HalpernG. FigueiraR.C.S. IaconelliA.Jr BorgesE.Jr Is there an association between artificial sweetener consumption and assisted reproduction outcomes?Reprod. Biomed. Online201836214515310.1016/j.rbmo.2017.11.00429233502
    [Google Scholar]
  23. LiH. ZhangY. HeY. HuangJ. YaoJ. ZhuangX. Association between consumption of sweeteners and endometrial cancer risk: A systematic review and meta-analysis of observational studies.Br. J. Nutr.20241311637210.1017/S000711452300148437424288
    [Google Scholar]
  24. DebrasC. ChazelasE. SrourB. Druesne-PecolloN. EsseddikY. Szabo de EdelenyiF. AgaësseC. De SaA. LutchiaR. GigandetS. HuybrechtsI. JuliaC. Kesse-GuyotE. AllèsB. AndreevaV.A. GalanP. HercbergS. Deschasaux-TanguyM. TouvierM. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study.PLoS Med.2022193e100395010.1371/journal.pmed.100395035324894
    [Google Scholar]
  25. Palomar-CrosA. StraifK. RomagueraD. AragonésN. Castaño-VinyalsG. MartinV. MorenoV. Gómez-AceboI. GuevaraM. AizpuruaA. Molina-BarcelóA. Jiménez-MoleónJ.J. TardónA. Contreras-LlanesM. Marcos-GrageraR. HuertaJ.M. Pérez-GómezB. EspinosaA. Hernández-SeguraN. Obón-SantacanaM. Alonso-MoleroJ. BurguiR. AmianoP. Pinto-CarbóM. Olmedo-RequenaR. Fernández-TardónG. Santos-SánchezV. Fernández de Larrea-BazN. Fernández-VillaT. CasabonneD. Dierssen-SotosT. ArdanazE. DorronsoroA. PollánM. KogevinasM. LassaleC. Consumption of aspartame and other artificial sweeteners and risk of cancer in the Spanish multicase-control study (MCC-Spain).Int. J. Cancer2023153597999310.1002/ijc.3457737323037
    [Google Scholar]
  26. ZhaoL. ZhangX. CodayM. GarciaD.O. LiX. Mossavar-RahmaniY. NaughtonM.J. Lopez-PentecostM. SaquibN. ShadyabA.H. SimonM.S. SnetselaarL.G. TabungF.K. TobiasD.K. VoPhamT. McGlynnK.A. SessoH.D. GiovannucciE. MansonJ.E. HuF.B. TinkerL.F. ZhangX. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality.JAMA2023330653754610.1001/jama.2023.1261837552302
    [Google Scholar]
  27. YanS. YanF. LiuL. LiB. LiuS. CuiW. Can artificial sweeteners increase the risk of cancer incidence and mortality: Evidence from prospective studies.Nutrients20221418374210.3390/nu1418374236145117
    [Google Scholar]
  28. WHO Aspartame hazard and risk assessment results released.2023Available From: https://www.who.int/news/item/14-07-2023-aspartame-hazard-and-risk-assessment-results-released
  29. ZhuL. ZhouB. ZhuX. ChengF. PanY. ZhouY. WuY. XuQ. Association between body mass index and female infertility in the United States: Data from national health and nutrition examination survey 2013–2018.Int. J. Gen. Med.2022151821183110.2147/IJGM.S34987435221716
    [Google Scholar]
  30. WHOInfertility Prevalence Estimates, 1990–2021.2023Available From: https://iris.who.int/bitstream/handle/10665/366700/9789240068315-eng.pdf?sequence=1
  31. Salas-HuetosA. BullóM. Salas-SalvadóJ. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies.Hum. Reprod. Update201723437138910.1093/humupd/dmx00628333357
    [Google Scholar]
  32. AounA. KhouryV.E. MalakiehR. Can nutrition help in the treatment of infertility?Prev. Nutr. Food Sci.202126210912010.3746/pnf.2021.26.2.10934316476
    [Google Scholar]
  33. HarpazD. YeoL.P. CecchiniF. KoonT.H.P. KushmaroA. TokA.I.Y. MarksR.S. EltzovE. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel.Molecules20182310245410.3390/molecules2310245430257473
    [Google Scholar]
  34. BassonA.R. Rodriguez-PalaciosA. CominelliF. Artificial sweeteners: History and new concepts on inflammation.Front. Nutr.2021874624710.3389/fnut.2021.74624734631773
    [Google Scholar]
  35. EmamatH. GhalandariH. TangestaniH. AbdollahiA. HekmatdoostA. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism.EXCLI J.20201962062632483408
    [Google Scholar]
  36. KogaF. KitagamiS. IzumiA. UemuraT. TakayamaO. KogaT. MizoguchiT. Relationship between nutrition and reproduction.Reprod. Med. Biol.202019325426410.1002/rmb2.1233232684824
    [Google Scholar]
  37. MuellerN.T. JacobsD.R.Jr MacLehoseR.F. DemerathE.W. KellyS.P. DreyfusJ.G. PereiraM.A. Consumption of caffeinated and artificially sweetened soft drinks is associated with risk of early menarche.Am. J. Clin. Nutr.2015102364865410.3945/ajcn.114.10095826178725
    [Google Scholar]
  38. SylvetskyA. RotherK.I. BrownR. Artificial sweetener use among children: Epidemiology, recommendations, metabolic outcomes, and future directions.Pediatr. Clin. North Am.201158614671480, xi10.1016/j.pcl.2011.09.00722093863
    [Google Scholar]
  39. RussellC. BakerP. GrimesC. LindbergR. LawrenceM.A. Global trends in added sugars and non-nutritive sweetener use in the packaged food supply: Drivers and implications for public health.Public Health Nutr.202326595296410.1017/S136898002200159835899782
    [Google Scholar]
  40. GrayJ.P. Acceptable daily intake Reference Module in Biomedical Sciences.AmsterdamElsevier2023
    [Google Scholar]
  41. LindsethG.N. CoolahanS.E. PetrosT.V. LindsethP.D. Neurobehavioral effects of aspartame consumption.Res. Nurs. Health201437318519310.1002/nur.2159524700203
    [Google Scholar]
  42. ÇelikE. DemirhanB.E. DemirhanB. YentürG. Determination of aspartame levels in soft drinks consumed in Ankara, Turkey.J. Food Res.20143615610.5539/jfr.v3n6p156
    [Google Scholar]
  43. AnbaraH. SheibaniM.T. RaziM. KianM. Insight into the mechanism of aspartame-induced toxicity in male reproductive system following long-term consumption in mice model.Environ. Toxicol.202136222323710.1002/tox.2302832951320
    [Google Scholar]
  44. ChoudharyA.K. LeeY.Y. Neurophysiological symptoms and aspartame: What is the connection?Nutr. Neurosci.201821530631610.1080/1028415X.2017.128834028198207
    [Google Scholar]
  45. GrindstaffM. The effect of artificial sweeteners on reactive oxygen species in the growth of yeast.2019Available From: https://mcstor.library.milligan.edu/handle/11558/4314
  46. CzarneckaK. PilarzA. RogutA. MajP. SzymańskaJ. OlejnikŁ. SzymańskiP. Aspartame—true or false? Narrative review of safety analysis of general use in products.Nutrients2021136195710.3390/nu1306195734200310
    [Google Scholar]
  47. LandriganP.J. StraifK. Aspartame and cancer – new evidence for causation.Environ. Health20212014210.1186/s12940‑021‑00725‑y33845854
    [Google Scholar]
  48. ShiY. Aspartame and cancer risk.Theoret Nat Sci20232316316610.54254/2753‑8818/23/20231048
    [Google Scholar]
  49. AhmadS.Y. FrielJ.K. MackayD.S. Effect of sucralose and aspartame on glucose metabolism and gut hormones.Nutr. Rev.202078972574610.1093/nutrit/nuz09932065635
    [Google Scholar]
  50. AdditivesE.P.F. FoodN.S.t. Safety of the proposed extension of use of sucralose (E 955) in foods for special medical purposes in young children.EFSA J.20161414361
    [Google Scholar]
  51. SchiffmanS.S. RotherK.I. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues.J. Toxicol. Environ. Health B Crit. Rev.201316739945110.1080/10937404.2013.84252324219506
    [Google Scholar]
  52. KilleJ. TeshJ.M. McAnultyP.A. RossF.W. WilloughbyC.R. BaileyG.P. WilbyO.K. TeshS.A. Sucralose: Assessment of teratogenic potential in the rat and the rabbit.Food Chem. Toxicol.200038Suppl. 2435210.1016/S0278‑6915(00)00027‑210882817
    [Google Scholar]
  53. GuptaS. KalraS. BharihokeV. DhurandharD. Sucralose induced pancreatic toxicity in albino rats: Histomorphological evidence.Braz. J. Morphol. Sci.201431212312710.4322/jms.073614
    [Google Scholar]
  54. MoriconiE. FeracoA. MarzollaV. InfanteM. LombardoM. FabbriA. CaprioM. Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners.Front. Endocrinol. (Lausanne)20201144410.3389/fendo.2020.0044432765425
    [Google Scholar]
  55. SchiffmanS.S. SchollE.H. FureyT.S. NagleH.T. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: In vitro screening assays.J. Toxicol. Environ. Health B Crit. Rev.202326630734110.1080/10937404.2023.221390337246822
    [Google Scholar]
  56. EisenreichA. GürtlerR. SchäferB. Heating of food containing sucralose might result in the generation of potentially toxic chlorinated compounds.Food Chem.202032112670010.1016/j.foodchem.2020.12670032278984
    [Google Scholar]
  57. Aguayo-GuerreroJ.A. Méndez-GarcíaL.A. Solleiro-VillavicencioH. Viurcos-SanabriaR. EscobedoG. Sucralose: From sweet success to metabolic controversies—unraveling the global health implications of a pervasive non-caloric artificial sweetener.Life (Basel)202414332310.3390/life1403032338541649
    [Google Scholar]
  58. del PozoS. Gómez-MartínezS. DíazL.E. NovaE. UrrialdeR. MarcosA. Potential effects of sucralose and saccharin on gut microbiota: A review.Nutrients2022148168210.3390/nu1408168235458244
    [Google Scholar]
  59. RahimipourM. TalebiA.R. AnvariM. Abbasi S.A. OmidiM. Saccharin consumption increases sperm DNA fragmentation and apoptosis in mice.Iran. J. Reprod. Med.201412530731225031574
    [Google Scholar]
  60. GongT. WeiQ.W. MaoD.G. NagaokaK. WatanabeG. TayaK. ShiF.X. Effects of daily exposure to saccharin and sucrose on testicular biologic functions in mice.Biol. Reprod.201695611610.1095/biolreprod.116.14088927683267
    [Google Scholar]
  61. SerranoJ. MeshramN.N. SoundarapandianM.M. SmithK.R. MasonC. BrownI.S. TyrbergB. KyriazisG.A. Saccharin stimulates insulin secretion dependent on sweet taste receptor-induced activation of PLC signaling axis.Biomedicines202210112010.3390/biomedicines1001012035052799
    [Google Scholar]
  62. AzeezO.H. AlkassS.Y. PersikeD.S. Long-term saccharin consumption and increased risk of obesity, diabetes, hepatic dysfunction, and renal impairment in rats.Medicina (Kaunas)2019551068110.3390/medicina5510068131601053
    [Google Scholar]
  63. MoreT.A. ShaikhZ. AliA. Artificial sweeteners and their health implications: A review.Biosci. Biotechnol. Res. Asia202118222723710.13005/bbra/2910
    [Google Scholar]
  64. IbiD. SuzukiF. HiramatsuM. Effect of AceK (acesulfame potassium) on brain function under dietary restriction in mice.Physiol. Behav.201818829129710.1016/j.physbeh.2018.02.02429458115
    [Google Scholar]
  65. MukherjeeA. ChakrabartiJ. In vivo cytogenetic studies on mice exposed to acesulfame-K—A non-nutritive sweetener.Food Chem. Toxicol.199735121177117910.1016/S0278‑6915(97)85469‑59449223
    [Google Scholar]
  66. HanawaY. HigashiyamaM. KuriharaC. TanemotoR. ItoS. MizoguchiA. NishiiS. WadaA. InabaK. SugiharaN. HoriuchiK. OkadaY. NarimatsuK. KomotoS. TomitaK. HokariR. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa.J. Gastroenterol. Hepatol.202136113140314810.1111/jgh.1565434368996
    [Google Scholar]
  67. BianX. ChiL. GaoB. TuP. RuH. LuK. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice.PLoS One2017126e017842610.1371/journal.pone.017842628594855
    [Google Scholar]
  68. PlowsJ.F. Morton-JonesJ. Bridge-ComerP.E. PonnampalamA. StanleyJ.L. VickersM.H. ReynoldsC.M. Consumption of the artificial sweetener acesulfame potassium throughout pregnancy induces glucose intolerance and adipose tissue dysfunction in mice.J. Nutr.202015071773178110.1093/jn/nxaa10632321168
    [Google Scholar]
  69. CongW. WangR. CaiH. DaimonC.M. Scheibye-KnudsenM. BohrV.A. TurkinR. WoodW.H.III BeckerK.G. MoaddelR. MaudsleyS. MartinB. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.PLoS One201388e7025710.1371/journal.pone.007025723950916
    [Google Scholar]
  70. UebansoT. OhnishiA. KitayamaR. YoshimotoA. NakahashiM. ShimohataT. MawatariK. TakahashiA. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice.Nutrients20179656010.3390/nu906056028587159
    [Google Scholar]
  71. LinC.H. LiH.Y. WangS.H. ChenY.H. ChenY.C. WuH.T. Consumption of non-nutritive sweetener, acesulfame potassium exacerbates atherosclerosis through dysregulation of lipid metabolism in ApoE−/− mice.Nutrients20211311398410.3390/nu1311398434836239
    [Google Scholar]
  72. Meyer-GerspachA.C. BiesiekierskiJ.R. DelooseE. CleversE. RotondoA. RehfeldJ.F. DepoortereI. Van OudenhoveL. TackJ. Effects of caloric and noncaloric sweeteners on antroduodenal motility, gastrointestinal hormone secretion and appetite-related sensations in healthy subjects.Am. J. Clin. Nutr.2018107570771610.1093/ajcn/nqy00429722834
    [Google Scholar]
  73. FaragM. A. RezkM. M. ElashalM. H. El-ArabyM. KhalifaS. A. El-SeediH. R. An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety.Food Res Int2022162Pt A111853
    [Google Scholar]
  74. SatyavathiK. RajuP.B. BupeshK. KiranT.N.R. Neotame: High intensity low caloric sweetener.Asian J. Chem.201022757925796
    [Google Scholar]
  75. MoraM.R. DandoR. The sensory properties and metabolic impact of natural and synthetic sweeteners.Compr. Rev. Food Sci. Food Saf.20212021554158310.1111/1541‑4337.1270333580569
    [Google Scholar]
  76. WilkK. KorytekW. PelczyńskaM. MoszakM. BogdańskiP. The effect of artificial sweeteners use on sweet taste perception and weight loss efficacy: A review.Nutrients2022146126110.3390/nu1406126135334918
    [Google Scholar]
  77. İncebayH. SaylakçıR. Voltammetric determination of neotame by using chitosan/nickelnanoparticles/multi walled carbon nanotubes biocomposite as a modifier.Electroanalysis20213361451146010.1002/elan.202100021
    [Google Scholar]
  78. GibbonsC. BeaulieuK. Almiron-RoigE. Navas-CarreteroS. MartínezJ.A. O’HaraB. O’ConnorD. NazareJ.A. Le BailA. RannouC. HardmanC. WiltonM. KjølbækL. ScottC. MoshoyiannisH. RabenA. HarroldJ.A. HalfordJ.C.G. FinlaysonG. Acute and two-week effects of neotame, stevia rebaudioside M and sucrose-sweetened biscuits on postprandial appetite and endocrine response in adults with overweight/obesity—a randomised crossover trial from the SWEET consortium.EBioMedicine202410210500510.1016/j.ebiom.2024.10500538553262
    [Google Scholar]
  79. SclafaniA. AckroffK. Advantame sweetener preference in C57BL/6J mice and Sprague-Dawley rats.Chem. Senses201540318118610.1093/chemse/bju07025560795
    [Google Scholar]
  80. OtabeA. FujiedaT. MasuyamaT. UbukataK. LeeC. Advantame – An overview of the toxicity data.Food Chem. Toxicol.2011491S2S710.1016/j.fct.2011.06.04621679738
    [Google Scholar]
  81. AdditivesE.P.F. FoodN.S.t. Scientific opinion on the safety of advantame for the proposed uses as a food additive.EFSA J.20131173301
    [Google Scholar]
  82. OrganizationW.H. WHO fact sheet on infertility.Glob. Reprod. Health202161e5210.1097/GRH.0000000000000052
    [Google Scholar]
  83. RamarajuG.A. TeppalaS. PrathigudupuK. KalagaraM. ThotaS. KotaM. CheemakurthiR. Association between obesity and sperm quality.Andrologia2018503e1288810.1111/and.1288828929508
    [Google Scholar]
  84. CoadJ. PedleyK. Nutrition in New Zealand: Can the past offer lessons for the present and guidance for the future?Nutrients20201211343310.3390/nu1211343333182406
    [Google Scholar]
  85. Al-QudsiF. Al-DossaryA. Commercial artificial sweeteners affect spermatogenesis in mice.(2020).Int. J. Life Sci. Pharma Res.2020104L6L15
    [Google Scholar]
  86. Salas-HuetosA. Maghsoumi-NorouzabadL. JamesE.R. CarrellD.T. AstonK.I. JenkinsT.G. Becerra-TomásN. JavidA.Z. AbedR. TorresP.J. LuqueE.M. RamírezN.D. MartiniA.C. Salas-SalvadóJ. Male adiposity, sperm parameters and reproductive hormones: An updated systematic review and collaborative meta-analysis.Obes. Rev.2021221e1308210.1111/obr.1308232705766
    [Google Scholar]
  87. LeisegangK. SenguptaP. AgarwalA. HenkelR. Obesity and male infertility: Mechanisms and management.Andrologia2021531e1361710.1111/and.1361732399992
    [Google Scholar]
  88. KasturiS.S. TannirJ. BranniganR.E. The metabolic syndrome and male infertility.J. Androl.200829325125910.2164/jandrol.107.00373118222914
    [Google Scholar]
  89. ChristofidesE.A. Point: Artificial sweeteners and obesity—not the solution and potentially a problem.Endocr. Pract.202127101052105510.1016/j.eprac.2021.08.00134389515
    [Google Scholar]
  90. AlsunniA.A. Effects of artificial sweetener consumption on glucose homeostasis and its association with type 2 diabetes and obesity.Int. J. Gen. Med.20201377578510.2147/IJGM.S27476033116769
    [Google Scholar]
  91. HigginsK.A. ConsidineR.V. MattesR.D. Aspartame consumption for 12 weeks does not affect glycemia, appetite, or body weight of healthy, lean adults in a randomized controlled trial.J. Nutr.2018148465065710.1093/jn/nxy02129659969
    [Google Scholar]
  92. SigalaD.M. WidamanA.M. HieronimusB. NunezM.V. LeeV. BenyamY. BremerA.A. MediciV. HavelP.J. StanhopeK.L. KeimN.L. Effects of consuming sugar-sweetened beverages for 2 weeks on 24-h circulating leptin profiles, ad libitum food intake and body weight in young adults.Nutrients20201212389310.3390/nu1212389333352724
    [Google Scholar]
  93. FantinoM. FantinoA. MatrayM. MistrettaF. Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults.Appetite201812555756510.1016/j.appet.2018.03.00729526693
    [Google Scholar]
  94. HigginsK.A. MattesR.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity.Am. J. Clin. Nutr.201910951288130110.1093/ajcn/nqy38130997499
    [Google Scholar]
  95. DebrasC. Deschasaux-TanguyM. ChazelasE. SellemL. Druesne-PecolloN. EsseddikY. Szabo de EdelenyiF. AgaësseC. De SaA. LutchiaR. JuliaC. Kesse-GuyotE. AllèsB. GalanP. HercbergS. HuybrechtsI. CossonE. TatulashviliS. SrourB. TouvierM. Artificial sweeteners and risk of type 2 diabetes in the prospective nutrinet-santé cohort.Diabetes Care20234691681169010.2337/dc23‑020637490630
    [Google Scholar]
  96. MeldgaardM. BrixN. Gaml-SørensenA. ErnstA. Ramlau-HansenC.H. TøttenborgS.S. HougaardK.S. BondeJ.P.E. ToftG. Consumption of sugar-sweetened or artificially sweetened beverages and semen quality in young men: A cross-sectional study.Int. J. Environ. Res. Public Health202219268210.3390/ijerph1902068235055501
    [Google Scholar]
  97. SwithersS.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.Trends Endocrinol. Metab.201324943144110.1016/j.tem.2013.05.00523850261
    [Google Scholar]
  98. CrézéC. CandalL. CrosJ. KnebelJ.F. SeysselK. StefanoniN. SchneiterP. MurrayM. TappyL. ToepelU. The impact of caloric and non caloric sweeteners on food intake and brain responses to food: A randomized crossover controlled trial in healthy humans.Nutrients201810561510.3390/nu1005061529762471
    [Google Scholar]
  99. FrankG.K.W. OberndorferT.A. SimmonsA.N. PaulusM.P. FudgeJ.L. YangT.T. KayeW.H. Sucrose activates human taste pathways differently from artificial sweetener.Neuroimage20083941559156910.1016/j.neuroimage.2007.10.06118096409
    [Google Scholar]
  100. RudengaK.J. SmallD.M. Amygdala response to sucrose consumption is inversely related to artificial sweetener use.Appetite201258250450710.1016/j.appet.2011.12.00122178008
    [Google Scholar]
  101. GreenE. MurphyC. Altered processing of sweet taste in the brain of diet soda drinkers.Physiol. Behav.2012107456056710.1016/j.physbeh.2012.05.00622583859
    [Google Scholar]
  102. KhanT.A. LeeJ.J. Ayoub-CharetteS. NoronhaJ.C. McGlynnN. ChiavaroliL. SievenpiperJ.L. WHO guideline on the use of non-sugar sweeteners: A need for reconsideration.Eur. J. Clin. Nutr.202377111009101310.1038/s41430‑023‑01314‑737723261
    [Google Scholar]
  103. DiasT.R. AlvesM.G. SilvaB.M. OliveiraP.F. Sperm glucose transport and metabolism in diabetic individuals.Mol. Cell. Endocrinol.20143961-2374510.1016/j.mce.2014.08.00525128846
    [Google Scholar]
  104. HuangH-F. DingG-L. LiuY. LiuM-E. PanJ-X. GuoM-X. ShengJ-Z. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis.Asian J. Androl.201517694895310.4103/1008‑682X.15084425814158
    [Google Scholar]
  105. TsujiiH. OhtaE. MiahA.G. HossainS. SalmaU. Effect of fructose on motility, acrosome reaction and in vitro fertilization capability of boar spermatozoa.Reprod. Med. Biol.20065425526110.1111/j.1447‑0578.2006.00150.x29662401
    [Google Scholar]
  106. BucciD. Rodriguez-GilJ.E. ValloraniC. SpinaciM. GaleatiG. TamaniniC. GLUTs and mammalian sperm metabolism.J. Androl.201132434835510.2164/jandrol.110.01119721088231
    [Google Scholar]
  107. MaceO.J. AffleckJ. PatelN. KellettG.L. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2.J. Physiol.2007582137939210.1113/jphysiol.2007.13090617495045
    [Google Scholar]
  108. Sánchez-TapiaM. Martínez-MedinaJ. TovarA.R. TorresN. Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and TLR4-mediated inflammatory pathways in adipose tissues of rats.Nutrients201911488010.3390/nu1104088031010163
    [Google Scholar]
  109. ZhengY. SarrM.G. Effect of the artificial sweetener, acesulfame potassium, a sweet taste receptor agonist, on glucose uptake in small intestinal cell lines.J. Gastrointest. Surg.201317115315810.1007/s11605‑012‑1998‑z22948835
    [Google Scholar]
  110. Romo-RomoA. Aguilar-SalinasC.A. Brito-CórdovaG.X. Gómez DíazR.A. Vilchis ValentínD. Almeda-ValdesP. Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: Systematic review of observational prospective studies and clinical trials.PLoS One2016118e016126410.1371/journal.pone.016126427537496
    [Google Scholar]
  111. BarbagalloF. CondorelliR.A. MongioìL.M. CannarellaR. CiminoL. MagagniniM.C. CrafaA. La VigneraS. CalogeroA.E. Molecular mechanisms underlying the relationship between obesity and male infertility.Metabolites2021111284010.3390/metabo1112084034940598
    [Google Scholar]
  112. NagpureS. MathurK. AgrawalR.K. DeshpandeD. Effect of artificial sweeteners on insulin resistance among type-2 diabetes mellitus patients.J. Family Med. Prim. Care202091697110.4103/jfmpc.jfmpc_329_1932110567
    [Google Scholar]
  113. LaffitteA. NeiersF. BriandL. Functional roles of the sweet taste receptor in oral and extraoral tissues.Curr. Opin. Clin. Nutr. Metab. Care201417437938510.1097/MCO.000000000000005824763065
    [Google Scholar]
  114. TeyS.L. SallehN.B. HenryJ. FordeC.G. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake.Int. J. Obes.201741345045710.1038/ijo.2016.22527956737
    [Google Scholar]
  115. AhmadS.Y. FrielJ.K. MacKayD.S. The effect of the artificial sweeteners on glucose metabolism in healthy adults: A randomized, double-blinded, crossover clinical trial.Appl. Physiol. Nutr. Metab.202045660661210.1139/apnm‑2019‑035931697573
    [Google Scholar]
  116. KimY. KeoghJ.B. CliftonP.M. Consumption of a beverage containing aspartame and acesulfame K for two weeks does not adversely influence glucose metabolism in adult males and females: A randomized crossover study.Int. J. Environ. Res. Public Health20201723904910.3390/ijerph1723904933291649
    [Google Scholar]
  117. BonnetF. TavenardA. EsvanM. LaviolleB. ViltardM. LepicardE.M. LainéF. Consumption of a carbonated beverage with high-intensity sweeteners has no effect on insulin sensitivity and secretion in nondiabetic adults.J. Nutr.201814881293129910.1093/jn/nxy10029982723
    [Google Scholar]
  118. MaJ. ChangJ. ChecklinH.L. YoungR.L. JonesK.L. HorowitzM. RaynerC.K. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects.Br. J. Nutr.2010104680380610.1017/S000711451000132720420761
    [Google Scholar]
  119. PepinoM.Y. TiemannC.D. PattersonB.W. WiceB.M. KleinS. Sucralose affects glycemic and hormonal responses to an oral glucose load.Diabetes Care20133692530253510.2337/dc12‑222123633524
    [Google Scholar]
  120. Romo-RomoA. Aguilar-SalinasC.A. Brito-CórdovaG.X. Gómez-DíazR.A. Almeda-ValdesP. Sucralose decreases insulin sensitivity in healthy subjects: A randomized controlled trial.Am. J. Clin. Nutr.2018108348549110.1093/ajcn/nqy15230535090
    [Google Scholar]
  121. Romo-RomoA. Aguilar-SalinasC.A. López-CarrascoM.G. Guillén-PinedaL.E. Brito-CórdovaG.X. Gómez-DíazR.A. Gómez-PérezF.J. Almeda-ValdesP. Sucralose consumption over 2 weeks in healthy subjects does not modify fasting plasma concentrations of appetite-regulating hormones: A randomized clinical trial.J. Acad. Nutr. Diet.202012081295130410.1016/j.jand.2020.03.01832711853
    [Google Scholar]
  122. LertritA. SrimachaiS. SaetungS. ChanprasertyothinS. ChailurkitL. AreevutC. KatekaoP. OngphiphadhanakulB. SriphrapradangC. Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: A randomized, double-blind, placebo-controlled trial.Nutrition201855-5612513010.1016/j.nut.2018.04.00130005329
    [Google Scholar]
  123. Gómez-ArauzA.Y. Bueno-HernándezN. PalomeraL.F. Alcántara-SuárezR. De LeónK.L. Méndez-GarcíaL.A. Carrero-AguirreM. Manjarrez-ReynaA.N. Martínez-ReyesC.P. Esquivel-VelázquezM. Ruiz-BarrancoA. Baltazar-LópezN. Islas-AndradeS. EscobedoG. MeléndezG. A single 48 mg sucralose sip unbalances monocyte subpopulations and stimulates insulin secretion in healthy young adults.J. Immunol. Res.2019201911010.1155/2019/610505931183389
    [Google Scholar]
  124. SathyapalanT. ThatcherN.J. HammersleyR. RigbyA.S. PechlivanisA. GooderhamN.J. HolmesE. le RouxC.W. AtkinS.L. CourtsF. Aspartame sensitivity? A double blind randomised crossover study.PLoS One2015103e011621210.1371/journal.pone.011621225786106
    [Google Scholar]
  125. ThomsonP. SantibañezR. AguirreC. GalganiJ.E. GarridoD. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults.Br. J. Nutr.2019122885686210.1017/S000711451900157031258108
    [Google Scholar]
  126. Bueno-HernándezN. Esquivel-VelázquezM. Alcántara-SuárezR. Gómez-ArauzA.Y. Espinosa-FloresA.J. de León-BarreraK.L. Mendoza-MartínezV.M. Sánchez MedinaG.A. León-HernándezM. Ruiz-BarrancoA. EscobedoG. MeléndezG. Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: A randomized, double blind, controlled trial.Nutr. J.20201913210.1186/s12937‑020‑00549‑532284053
    [Google Scholar]
  127. Bayındır G.A. KeserA. TunçerE. Altuntaş Y.T. Kepenekci Bayramİ. Effect of saccharin, a non-nutritive sweeteners, on insulin and blood glucose levels in healthy young men: A crossover trial.Diabetes Metab. Syndr.202216610250010.1016/j.dsx.2022.10250035598544
    [Google Scholar]
  128. SerranoJ. SmithK.R. CrouchA.L. SharmaV. YiF. VargovaV. LaMoiaT.E. DupontL.M. SernaV. TangF. Gomes-DiasL. BlakesleeJ.J. HatzakisE. PetersonS.N. AndersonM. PratleyR.E. KyriazisG.A. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice.Microbiome2021911110.1186/s40168‑020‑00976‑w33431052
    [Google Scholar]
  129. SuezJ. CohenY. Valdés-MasR. MorU. Dori-BachashM. FedericiS. ZmoraN. LeshemA. HeinemannM. LinevskyR. ZurM. Ben-Zeev BrikR. BukimerA. Eliyahu-MillerS. MetzA. FischbeinR. SharovO. MalitskyS. ItkinM. StettnerN. HarmelinA. ShapiroH. Stein-ThoeringerC.K. SegalE. ElinavE. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance.Cell20221851833073328.e1910.1016/j.cell.2022.07.01635987213
    [Google Scholar]
  130. SimonB.R. ParleeS.D. LearmanB.S. MoriH. SchellerE.L. CawthornW.P. NingX. GallagherK. TyrbergB. Assadi-PorterF.M. EvansC.R. MacDougaldO.A. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors.J. Biol. Chem.201328845324753248910.1074/jbc.M113.51403424068707
    [Google Scholar]
  131. LuddiA. GoverniniL. WilmskötterD. GudermannT. BoekhoffI. PiomboniP. Taste receptors: New players in sperm biology.Int. J. Mol. Sci.201920496710.3390/ijms2004096730813355
    [Google Scholar]
  132. TurnerA. VeyseyM. KeelyS. ScarlettC.J. LucockM. BeckettE.L. Intense sweeteners, taste receptors and the gut microbiome: A metabolic health perspective.Int. J. Environ. Res. Public Health20201711409410.3390/ijerph1711409432521750
    [Google Scholar]
  133. DingN. ZhangX. ZhangX.D. JingJ. LiuS.S. MuY.P. PengL.L. YanY.J. XiaoG.M. BiX.Y. ChenH. LiF.H. YaoB. ZhaoA.Z. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes.Gut20206991608161910.1136/gutjnl‑2019‑31912731900292
    [Google Scholar]
  134. RoweM. VeerusL. TrosvikP. BucklingA. PizzariT. The reproductive microbiome: An emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation.Trends Ecol. Evol.202035322023410.1016/j.tree.2019.11.00431952837
    [Google Scholar]
  135. WangH. XuA. GongL. ChenZ. ZhangB. LiX. The microbiome, an important factor that is easily overlooked in male infertility.Front. Microbiol.20221383127210.3389/fmicb.2022.83127235308385
    [Google Scholar]
  136. Mendoza-MartínezV.M. Zavala-SolaresM.R. Espinosa-FloresA.J. León-BarreraK.L. Alcántara-SuárezR. Carrillo-RuízJ.D. EscobedoG. Roldan-ValadezE. Esquivel-VelázquezM. Meléndez-MierG. Bueno-HernándezN. Is a non-caloric sweetener-free diet good to treat functional gastrointestinal disorder symptoms? A randomized controlled trial.Nutrients2022145109510.3390/nu1405109535268070
    [Google Scholar]
  137. Ruiz-OjedaF.J. Plaza-DíazJ. Sáez-LaraM.J. GilA. Effects of sweeteners on the hut microbiota: A review of experimental studies and clinical trials.Adv. Nutr.2019101Suppl. 1S31S4810.1093/advances/nmy03730721958
    [Google Scholar]
  138. Plaza-DiazJ. Pastor-VillaescusaB. Rueda-RoblesA. Abadia-MolinaF. Ruiz-OjedaF.J. Plausible biological interactions of low- and non-calorie sweeteners with the intestinal microbiota: An update of recent studies.Nutrients2020124115310.3390/nu1204115332326137
    [Google Scholar]
  139. ShahriarS. AhsanT. KhanA. AkhteruzzamanS. ShehreenS. SajibA.A. Aspartame, acesulfame K and sucralose- influence on the metabolism of Escherichia coli. Metabolism Open2020810007210.1016/j.metop.2020.10007233336183
    [Google Scholar]
  140. LobachA.R. RobertsA. RowlandI.R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota.Food Chem. Toxicol.201912438539910.1016/j.fct.2018.12.00530557670
    [Google Scholar]
  141. Evidence Explained"Accessed" date to websites.2024Available From: https://evidenceexplained.com/index.php/node/2252
  142. WangY. XieZ. Exploring the role of gut microbiome in male reproduction.Andrology202210344145010.1111/andr.1314334918486
    [Google Scholar]
  143. BishtS. FaiqM. TolahunaseM. DadaR. Oxidative stress and male infertility.Nat. Rev. Urol.201714847048510.1038/nrurol.2017.6928508879
    [Google Scholar]
  144. CollinF. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases.Int. J. Mol. Sci.20192010240710.3390/ijms2010240731096608
    [Google Scholar]
  145. KearnsM. MacAindriuF. ReynoldsC. The impact of non-caloric sweeteners on male fertility: A systematic review in rodent models.Proceedings of the Nutrition Society , Volume 80 , Issue OCE5: Summer Conference27 October2021E16710.1017/S0029665121002950
    [Google Scholar]
  146. MinamiyamaY. KobayashiK. NoguchiY. TakemuraS. IchikawaH. Actions of various sweeteners on rat sperm.Glycative Stress Research202072132141
    [Google Scholar]
  147. AnbaraH. SheibaniM.T. RaziM. Long-term effect of aspartame on male reproductive system: Evidence for testicular histomorphometrics, Hsp70-2 protein expression and biochemical status.Int. J. Fertil. Steril.20201429110132681620
    [Google Scholar]
  148. SylvetskyA.C. SenS. MerkelP. DoreF. SternD.B. HenryC.J. CaiH. WalterP.J. CrandallK.A. RotherK.I. HubalM.J. Consumption of diet soda sweetened with sucralose and acesulfame-potassium alters inflammatory transcriptome pathways in females with overweight and obesity.Mol. Nutr. Food Res.20206411190116610.1002/mnfr.20190116632281732
    [Google Scholar]
  149. ZafrillaP. MasoodiH. CerdáB. García-VigueraC. VillañoD. Biological effects of stevia, sucralose and sucrose in citrus–maqui juices on overweight subjects.Food Funct.202112188535854310.1039/D1FO01160J34323244
    [Google Scholar]
  150. AzeezO.H. Evaluation of some male and female rats’ reproductive hormones following administration of aspartame with or without vitamin C or E.Iraqi J Veter Med2021452142010.30539/ijvm.v45i2.1256
    [Google Scholar]
  151. GurungP. YetiskulE. JialalI. Physiology, male reproductive system.Tampa, Florida, United StateStatPearls Publishing2021
    [Google Scholar]
  152. DohleG.R. SmitM. WeberR.F.A. Androgens and male fertility.World J. Urol.200321534134510.1007/s00345‑003‑0365‑914566423
    [Google Scholar]
  153. RamasamyR. SchulsterM. BernieA.M. The role of estradiol in male reproductive function.Asian J. Androl.201618343544010.4103/1008‑682X.17393226908066
    [Google Scholar]
  154. Al-ChalabiM. BassA.N. AlsalmanI. Physiology, Prolactin.Tampa, Florida, United StateStatPearls2018
    [Google Scholar]
  155. SheibaniM. AnbaraH. MorovvatiH. RaziM. SalarAmoliJ. Effect of long term-administration of aspartame on sperm quality, testosterone and oxidant parameters in mice.J Ilam Univ Med Sci201927315016110.29252/sjimu.27.3.150
    [Google Scholar]
  156. HelalE.G.E. AbdelazizM.A. TahaN.M. El-GamaM.S. The influence of acesulfame-k and aspartame on some physiological parameters in male albino rats.Egypt. J. Hosp. Med.20197511976198110.21608/ejhm.2019.29170
    [Google Scholar]
  157. Al-SalamyA. Al-AwadyH. Effect of different doses of aspartame on the male reproduction hormones concentration in rats.Plant Arch.201919s218301832
    [Google Scholar]
  158. FawziD.F. JassimB.A. Histological study of effects of saccharin on thyroid gland in male white mice.Ann. Rom. Soc. Cell Biol.202125159445955
    [Google Scholar]
  159. Krajewska-KulakE. SenguptaP. Thyroid function in male infertility.Front. Endocrinol. (Lausanne)2013417410.3389/fendo.2013.0017424312078
    [Google Scholar]
  160. SachmechiI. KhalidA. AwanS.I. MalikZ.R. SharifzadehM. Autoimmune thyroiditis with hypothyroidism induced by sugar substitutes.Cureus2018109e326810.7759/cureus.326830430057
    [Google Scholar]
  161. LebdaM.A. SadekK.M. El-SayedY.S. Aspartame and soft drink-mediated neurotoxicity in rats: Implication of oxidative stress, apoptotic signaling pathways, electrolytes and hormonal levels.Metab. Brain Dis.20173251639164710.1007/s11011‑017‑0052‑y28660358
    [Google Scholar]
  162. AmiriM. Ramezani TehraniF. Potential adverse effects of female and male obesity on fertility: A narrative review.Int. J. Endocrinol. Metab.2020183e10177610.5812/ijem.10177633257906
    [Google Scholar]
  163. GambineriA. LaudisioD. MaroccoC. RadelliniS. ColaoA. SavastanoS. Female infertility: Which role for obesity?Int. J. Obes. Suppl.201991657210.1038/s41367‑019‑0009‑131391925
    [Google Scholar]
  164. BroughtonD.E. MoleyK.H. Obesity and female infertility: Potential mediators of obesity’s impact.Fertil. Steril.2017107484084710.1016/j.fertnstert.2017.01.01728292619
    [Google Scholar]
  165. YunkerA.G. AlvesJ.M. LuoS. AngeloB. DeFendisA. PickeringT.A. MonterossoJ.R. PageK.A. Obesity and sex-related associations with differential effects of sucralose vs sucrose on appetite and reward processing: A randomized crossover trial.JAMA Netw. Open202149e2126313e212631310.1001/jamanetworkopen.2021.2631334581796
    [Google Scholar]
  166. AzadM.B. Abou-SettaA.M. ChauhanB.F. RabbaniR. LysJ. CopsteinL. MannA. JeyaramanM.M. ReidA.E. FianderM. MacKayD.S. McGavockJ. WicklowB. ZarychanskiR. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies.CMAJ201718928E929E93910.1503/cmaj.16139028716847
    [Google Scholar]
  167. NandiA. WangX. AcciliD. WolgemuthD.J. The effect of insulin signaling on female reproductive function independent of adiposity and hyperglycemia.Endocrinology201015141863187110.1210/en.2009‑078820176725
    [Google Scholar]
  168. RojasJ. ChávezM. OlivarL. RojasM. MorilloJ. MejíasJ. CalvoM. BermúdezV. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth.Int. J. Reprod. Med.2014201411710.1155/2014/71905025763405
    [Google Scholar]
  169. YeungE.H. ZhangC. MumfordS.L. YeA. TrevisanM. ChenL. BrowneR.W. Wactawski-WendeJ. SchistermanE.F. Longitudinal study of insulin resistance and sex hormones over the menstrual cycle: The BioCycle Study.J. Clin. Endocrinol. Metab.201095125435544210.1210/jc.2010‑070220843950
    [Google Scholar]
  170. PasqualiR. Obesity, fat distribution and infertility.Maturitas200654436337110.1016/j.maturitas.2006.04.01816725287
    [Google Scholar]
  171. MostafaH. AmmarI. El-ShafeiD. AllithyN. AbdellatifN. Alaa El-DinA. Commingle consumption of monosodium glutamate and aspartame and potential reproductive system affection of female Albino rats: Involvement of VASA gene expression and oxidative stress.Adv. Anim. Vet. Sci.202195700708
    [Google Scholar]
  172. AgarwalA. Aponte-MelladoA. PremkumarB.J. ShamanA. GuptaS. The effects of oxidative stress on female reproduction: A review.Reprod. Biol. Endocrinol.20121014910.1186/1477‑7827‑10‑4922748101
    [Google Scholar]
  173. SchliepK.C. SchistermanE.F. MumfordS.L. PollackA.Z. PerkinsN.J. YeA. ZhangC.J. StanfordJ.B. PorucznikC.A. HammoudA.O. Wactawski-WendeJ. Energy-containing beverages: Reproductive hormones and ovarian function in the BioCycle Study.Am. J. Clin. Nutr.201397362163010.3945/ajcn.111.02475223364018
    [Google Scholar]
  174. Diamanti-KandarakisE. PaterakisT. KandarakisH.A. Indices of low-grade inflammation in polycystic ovary syndrome.Ann. N. Y. Acad. Sci.20061092117518610.1196/annals.1365.01517308143
    [Google Scholar]
  175. RudnickaE. SuchtaK. GrymowiczM. Calik-KsepkaA. SmolarczykK. DuszewskaA.M. SmolarczykR. MeczekalskiB. Chronic low grade inflammation in pathogenesis of PCOS.Int. J. Mol. Sci.2021227378910.3390/ijms2207378933917519
    [Google Scholar]
  176. BarcikowskaZ. Rajkowska-LabonE. GrzybowskaM.E. Hansdorfer-KorzonR. ZorenaK. Inflammatory markers in dysmenorrhea and therapeutic options.Int. J. Environ. Res. Public Health2020174119110.3390/ijerph1704119132069859
    [Google Scholar]
  177. SuezJ. KoremT. Zilberman-SchapiraG. SegalE. ElinavE. Non-caloric artificial sweeteners and the microbiome: Findings and challenges.Gut Microbes20156214915510.1080/19490976.2015.101770025831243
    [Google Scholar]
  178. HongX. MaJ. YinJ. FangS. GengJ. ZhaoH. ZhuM. YeM. ZhuX. XuanY. WangB. The association between vaginal microbiota and female infertility: A systematic review and meta-analysis.Arch. Gynecol. Obstet.2020302356957810.1007/s00404‑020‑05675‑332638096
    [Google Scholar]
  179. TomaiuoloR. VenerusoI. CariatiF. D’ArgenioV. Microbiota and human reproduction: The case of female infertility.High Throughput2020921210.3390/ht902001232375241
    [Google Scholar]
  180. Le RoyT. ClémentK. Bittersweet: Artificial sweeteners and the gut microbiome.Nat. Med.202228112259226010.1038/s41591‑022‑02063‑z36323860
    [Google Scholar]
  181. HeF. LiY. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: A review.J. Ovarian Res.20201317310.1186/s13048‑020‑00670‑332552864
    [Google Scholar]
  182. YooJ. GroerM. DutraS. SarkarA. McSkimmingD. Gut microbiota and immune system interactions.Microorganisms2020810158710.3390/microorganisms810158733076307
    [Google Scholar]
  183. ConzA. SalmonaM. DiomedeL. Effect of non-nutritive sweeteners on the gut microbiota.Nutrients2023158186910.3390/nu1508186937111090
    [Google Scholar]
  184. NettletonJ.E. ReimerR.A. ShearerJ. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?Physiol. Behav.2016164Pt B48849310.1016/j.physbeh.2016.04.02927090230
    [Google Scholar]
  185. KoedooderR. SingerM. SchoenmakersS. SavelkoulP.H.M. MorréS.A. de JongeJ.D. PoortL. CuypersW.J.S.S. BeckersN.G.M. BroekmansF.J.M. CohlenB.J. den HartogJ.E. FleischerK. LambalkC.B. SmeenkJ.M.J.S. BuddingA.E. LavenJ.S.E. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: A prospective study.Hum. Reprod.20193461042105410.1093/humrep/dez06531119299
    [Google Scholar]
  186. SchoenmakersS. LavenJ. The vaginal microbiome as a tool to predict IVF success.Curr. Opin. Obstet. Gynecol.202032316917810.1097/GCO.000000000000062632175923
    [Google Scholar]
  187. KoedooderR. SingerM. SchoenmakersS. SavelkoulP.H.M. MorréS.A. de JongeJ.D. PoortL. CuypersW.J.S.S. BuddingA.E. LavenJ.S.E. The ReceptIVFity cohort study protocol to validate the urogenital microbiome as predictor for IVF or IVF/ICSI outcome.Reprod. Health201815120210.1186/s12978‑018‑0653‑x30526664
    [Google Scholar]
  188. BernabeuA. LledoB. DíazM.C. LozanoF.M. RuizV. FuentesA. Lopez-PinedaA. MolinerB. CastilloJ.C. OrtizJ.A. TenJ. LlacerJ. Carratala-MunueraC. Orozco-BeltranD. QuesadaJ.A. BernabeuR. Effect of the vaginal microbiome on the pregnancy rate in women receiving assisted reproductive treatment.J. Assist. Reprod. Genet.201936102111211910.1007/s10815‑019‑01564‑031446545
    [Google Scholar]
  189. ZhaoC. WeiZ. YangJ. ZhangJ. YuC. YangA. ZhangM. ZhangL. WangY. MuX. HengX. YangH. GaiZ. WangX. ZhangL. Characterization of the vaginal microbiome in women with infertility and its potential correlation with hormone stimulation during in vitro fertilization surgery.mSystems202054e00450-2010.1128/mSystems.00450‑2032665329
    [Google Scholar]
  190. ShimobayashiM. AlbertV. WoelnerhanssenB. FreiI.C. WeissenbergerD. Meyer-GerspachA.C. ClementN. MoesS. ColombiM. MeierJ.A. SwierczynskaM.M. JenöP. BeglingerC. PeterliR. HallM.N. Insulin resistance causes inflammation in adipose tissue.J. Clin. Invest.201812841538155010.1172/JCI9613929528335
    [Google Scholar]
  191. PalatnikA. MoosreinerA. Olivier-Van StichelenS. Consumption of non-nutritive sweeteners during pregnancy.Am. J. Obstet. Gynecol.2020223221121810.1016/j.ajog.2020.03.03432275895
    [Google Scholar]
  192. SettiA.S. HalpernG. BragaD.P.A.F. IaconelliA.Jr BorgesE.Jr Maternal lifestyle and nutritional habits are associated with oocyte quality and ICSI clinical outcomes.Reprod. Biomed. Online202244237037910.1016/j.rbmo.2021.08.02534857474
    [Google Scholar]
  193. HatchE.E. WiseL.A. MikkelsenE.M. ChristensenT. RiisA.H. SørensenH.T. RothmanK.J. Caffeinated beverage and soda consumption and time to pregnancy.Epidemiology201223339340110.1097/EDE.0b013e31824cbaac22407137
    [Google Scholar]
  194. AyoobK.T. Consumption of non-nutritive sweeteners during pregnancy.Am. J. Obstet. Gynecol.2020223695295310.1016/j.ajog.2020.08.02032795426
    [Google Scholar]
  195. MaslovaE. StrømM. OlsenS.F. HalldorssonT.I. Consumption of artificially-sweetened soft drinks in pregnancy and risk of child asthma and allergic rhinitis.PLoS One201382e5726110.1371/journal.pone.005726123460835
    [Google Scholar]
  196. Olivier-Van StichelenS. RotherK.I. HanoverJ.A. Maternal exposure to non-nutritive sweeteners impacts progeny’s metabolism and microbiome.Front. Microbiol.201910136010.3389/fmicb.2019.0136031281295
    [Google Scholar]
  197. Laforest-LapointeI. BeckerA.B. MandhaneP.J. TurveyS.E. MoraesT.J. SearsM.R. SubbaraoP. SycuroL.K. AzadM.B. ArrietaM.C. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index.Gut Microbes2021131185751310.1080/19490976.2020.185751333382954
    [Google Scholar]
  198. Bridge-ComerP.E. VickersM.H. Morton-JonesJ. SpadaA. RongJ. ReynoldsC.M. Impact of maternal intake of artificial sweetener, acesulfame-k, on metabolic and reproductive health outcomes in male and female mouse offspring.Front. Nutr.2021874520310.3389/fnut.2021.74520334938757
    [Google Scholar]
  199. SylvetskyA.C. GardnerA.L. BaumanV. BlauJ.E. GarraffoH.M. WalterP.J. RotherK.I. Nonnutritive sweeteners in breast milk.J. Toxicol. Environ. Health A201578161029103210.1080/15287394.2015.105364626267522
    [Google Scholar]
  200. National Library of MedicineAcesulfame.Drugs and Lactation Database (LactMed®).Bethesda, MarylandNational Library of Medicine2006
    [Google Scholar]
  201. StampeS. Leth-MøllerM. GreibeE. Hoffmann-LückeE. PedersenM. OvesenP. Artificial sweeteners in breast milk: A clinical investigation with a Kinetic Perspective.Nutrients20221413263510.3390/nu1413263535807817
    [Google Scholar]
  202. National Library of MedicineSucralose. Drugs and Lactation Database (LactMed®).Bethesda, MarylandNational Library of Medicine2022
    [Google Scholar]
  203. LiuY. LiX. WuY. SuQ. QinL. MaJ. The associations between maternal serum aspartame and sucralose and metabolic health during pregnancy.Nutrients20221423500110.3390/nu1423500136501030
    [Google Scholar]
  204. von Poser ToigoE. HuffellA.P. MotaC.S. BertoliniD. PettenuzzoL.F. DalmazC. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.Appetite20158716817410.1016/j.appet.2014.12.21325543075
    [Google Scholar]
  205. NettletonJ.E. ChoN.A. KlancicT. NicolucciA.C. ShearerJ. BorglandS.L. JohnstonL.A. RamayH.R. Noye TuplinE. ChleilatF. ThomsonC. MayengbamS. McCoyK.D. ReimerR.A. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring.Gut202069101807181710.1136/gutjnl‑2018‑31750531996393
    [Google Scholar]
  206. AzadM.B. SharmaA.K. de SouzaR.J. DolinskyV.W. BeckerA.B. MandhaneP.J. TurveyS.E. SubbaraoP. LefebvreD.L. SearsM.R. Association between artificially sweetened beverage consumption during pregnancy and infant body mass index.JAMA Pediatr.2016170766267010.1001/jamapediatrics.2016.030127159792
    [Google Scholar]
  207. AzadM.B. ArchibaldA. TomczykM.M. HeadA. CheungK.G. de SouzaR.J. BeckerA.B. MandhaneP.J. TurveyS.E. MoraesT.J. SearsM.R. SubbaraoP. DolinskyV.W. Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: Evidence from humans, mice, and cells.Int. J. Obes.202044102137214810.1038/s41366‑020‑0575‑x32366959
    [Google Scholar]
  208. ParkS. BelfoulA.M. RastelliM. JangA. MonnoyeM. BaeH. KamitakaharaA. GiavaliscoP. SunS. BarelleP.Y. PlowsJ. JangC. FodorA. GoranM.I. BouretS.G. Maternal low-calorie sweetener consumption rewires hypothalamic melanocortin circuits via a gut microbial co-metabolite pathway.JCI Insight2023810e15639710.1172/jci.insight.15639737014702
    [Google Scholar]
  209. MorahanH.L. LeenaarsC.H.C. BoakesR.A. RooneyK.B. Metabolic and behavioural effects of prenatal exposure to non-nutritive sweeteners: A systematic review and meta-analysis of rodent models.Physiol. Behav.202021311269610.1016/j.physbeh.2019.11269631647992
    [Google Scholar]
  210. LiG. WangR. ZhangC. LiL. ZhangJ. SunG. Consumption of non-nutritive sweetener during pregnancy and weight gain in offspring: Evidence from human studies.Nutrients20221423509810.3390/nu1423509836501127
    [Google Scholar]
  211. AliF. Consumption of artificial sweeteners in pregnancy increased overweight risk in infants.Arch. Dis. Child. Educ. Pract. Ed.2017102527727710.1136/archdischild‑2017‑31261828179381
    [Google Scholar]
  212. CaiC. SivakA. DavenportM.H. Effects of prenatal artificial sweeteners consumption on birth outcomes: A systematic review and meta-analysis.Public Health Nutr.202124155024503310.1017/S136898002100017333441213
    [Google Scholar]
  213. PlowsJ.F. ArisI.M. Rifas-ShimanS.L. GoranM.I. OkenE. Associations of maternal non-nutritive sweetener intake during pregnancy with offspring body mass index and body fat from birth to adolescence.Int. J. Obes.202246118619310.1038/s41366‑021‑00897‑034611285
    [Google Scholar]
  214. Razieh Zereshki NooriA. PilevarianA.A. The effect of maternal exposure to acesulfame potassium (Acesulfame-K) on the development of the male gonad in adult rats.Russ. J. Dev. Biol.202051533634110.1134/S1062360420050069
    [Google Scholar]
  215. GodoiA.R. FioravanteV.C. SantosB.M. MartinezF.E. PinheiroP.F.F. Fetal programming by sodium saccharin and damage on male offspring reproductive.bioRxiv202110.1101/2021.10.15.464538
    [Google Scholar]
  216. JiangJ. QiL. WeiQ. ShiF. Effects of daily exposure to saccharin sodium and rebaudioside A on the ovarian cycle and steroidogenesis in rats.Reprod. Toxicol.201876354510.1016/j.reprotox.2017.12.00629262312
    [Google Scholar]
  217. VecchiaC.L. Low-calorie sweeteners and the risk of preterm delivery: Results from two studies and a meta-analysis.J. Fam. Plann. Reprod. Health Care2013391121310.1136/jfprhc‑2012‑10054523296849
    [Google Scholar]
  218. ChiangY.F. ChenH.Y. LaiY.H. AliM. ChenY.C. HsiaS.M. Consumption of artificial sweetener acesulfame potassium increases preterm risk and uterine contraction with calcium influx increased via myosin light chain kinase–myosin light chain 20 related signaling pathway.Mol. Nutr. Food Res.20226620220029810.1002/mnfr.20220029835986687
    [Google Scholar]
  219. LeeJ.J. Cook-WiensG. JohnsonB.D. BraunsteinG.D. BergaS.L. StanczykF.Z. PepineC.J. Bairey MerzC.N. ShufeltC.L. Age at menarche and risk of cardiovascular disease outcomes: Findings from the national heart lung and blood institute-sponsored women’s ischemia syndrome evaluation.J. Am. Heart Assoc.2019812e01240610.1161/JAHA.119.01240631165670
    [Google Scholar]
  220. CarwileJ.L. WillettW.C. SpiegelmanD. HertzmarkE. Rich-EdwardsJ. FrazierA.L. MichelsK.B. Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls.Hum. Reprod.201530367568310.1093/humrep/deu34925628346
    [Google Scholar]
  221. AnitaS. SimanjuntakY.T. The Correlation between Junk food consumption and age of menarche of elementary school student in Gedung Johor Medan.Unnes J Pub Health201871212410.15294/ujph.v7i1.17093
    [Google Scholar]
  222. KimJ.H. LimJ.S. Early menarche and its consequence in Korean female: Reducing fructose intake could be one solution.Clin Exp Pediat2021641122010.3345/cep.2019.0035332403898
    [Google Scholar]
  223. TsaiM.C. LeeY.L. ChenY.C. Association of the consumption of common drinks with early puberty in both sexes.Front. Public Health20221085447710.3389/fpubh.2022.85447736536777
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013315621240802055207
Loading
/content/journals/cnf/10.2174/0115734013315621240802055207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test