Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

The process known as “programmed cell death” is referred to as “apoptosis,” a term frequently used in scientific research. Typically, the body's own system eliminates damaged cells by identifying defective ones and activating their destruction in response to various signals. However, if its precise mechanisms are understood, apoptosis can also be intentionally induced by external factors. Herbal substances have been found to contain various ingredients that can trigger apoptosis. Breast cancer, a highly fatal condition, is caused by the uncontrolled division of abnormal cells. This uncontrolled cell division is the underlying cause of the disease. Currently, there is no ideal solution to this problem. However, apoptosis has the potential to be a highly effective therapeutic strategy for treating this devastating disease. In the near future, herbal medicines could treat breast cancer by inducing apoptosis in tumor cells. These herbal treatments offer fewer adverse reactions compared to current chemical therapies, which often have numerous unwanted side effects. This review article examines the process of apoptosis and various herbal remedies found in studies to effectively induce apoptosis in breast cancer cells. This review article is significant because it highlights the focus on apoptosis as a therapeutic strategy and the potential of herbal remedies in treating breast cancer. This underscores the importance of exploring natural substances in developing safer and more effective treatments for a lethal disease.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013303288240730061019
2024-08-08
2024-12-27
Loading full text...

Full text loading...

References

  1. McCarthyN.J. EvanG.I. Methods for detecting and quantifying apoptosis.Curr. Top. Dev. Biol.19973625927810.1016/S0070‑2153(08)60507‑49342533
    [Google Scholar]
  2. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv Biol Earth Sci2024951010.62476/abes.9s5
    [Google Scholar]
  3. AiS. LiY. ZhengH. ZhangM. TaoJ. LiuW. PengL. WangZ. WangY. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023.J. Nanobiotechnology202422114010.1186/s12951‑024‑02426‑338556857
    [Google Scholar]
  4. RosicG SelakovicD OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Advances Biol Earth Sci202491134
    [Google Scholar]
  5. LavrikI.N. GolksA. KrammerP.H. Caspases: Pharmacological manipulation of cell death.J. Clin. Invest.2005115102665267210.1172/JCI2625216200200
    [Google Scholar]
  6. LockshinR.A. ZakeriZ. Programmed cell death and apoptosis: Origins of the theory.Nat. Rev. Mol. Cell Biol.20012754555010.1038/3508009711433369
    [Google Scholar]
  7. ShinG. LeeJ.E. LeeS.Y. LeeD.H. LimS.I. Spatially organized nanoassembly of single-chain TRAIL that induces optimal death receptor clustering and cancer-specific apoptosis.J. Drug Deliv. Sci. Technol.20249510563810.1016/j.jddst.2024.105638
    [Google Scholar]
  8. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710.1186/1756‑9966‑30‑8721943236
    [Google Scholar]
  9. GarimbertiE. FedericoC. RagusaD. BrunoF. SacconeS. BridgerJ.M. TosiS. Alterations in genome organization in lymphoma cell nuclei due to the presence of the t(14;18) translocation.Int. J. Mol. Sci.2024254237710.3390/ijms2504237738397052
    [Google Scholar]
  10. ReedJC Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies.Semin Hematol1997344 Suppl 5919
    [Google Scholar]
  11. KroemerG. GalluzziL. BrennerC. Mitochondrial membrane permeabilization in cell death.Physiol. Rev.20078719916310.1152/physrev.00013.200617237344
    [Google Scholar]
  12. GhobrialI.M. WitzigT.E. AdjeiA.A. Targeting apoptosis pathways in cancer therapy.CA Cancer J. Clin.200555317819410.3322/canjclin.55.3.17815890640
    [Google Scholar]
  13. Topçu-TarladaçalışırY. Sapmaz-MetinM. MercanZ. ErçetinD. Quercetin attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis by inhibiting the glucose regulatory protein 78 activation.Balkan Med. J.2024411303710.4274/balkanmedj.galenos.2023.2023‑10‑938173174
    [Google Scholar]
  14. IbrahimL.F. MarzoukM.M. HusseinS.R. KawashtyS.A. MahmoudK. SalehN.A.M. Flavonoid constituents and biological screening of Astragalus bombycinus Boiss.Nat. Prod. Res.2013274-538639310.1080/14786419.2012.70121322765022
    [Google Scholar]
  15. LiX. QuL. DongY. HanL. LiuE. FangS. ZhangY. WangT. A review of recent research progress on the Astragalus genus.Molecules20141911188501888010.3390/molecules19111885025407722
    [Google Scholar]
  16. GülcemalD. Alankuş-ÇalışkanÖ. PerroneA. ÖzgökçeF. PiacenteS. BedirE. Cycloartane glycosides from Astragalus aureus.Phytochemistry201172876176810.1016/j.phytochem.2011.02.00621377702
    [Google Scholar]
  17. ZhuJ. ZhangH. ZhuZ. ZhangQ. MaX. CuiZ. YaoT. Effects and mechanism of flavonoids from Astragalus complanatus on breast cancer growth.Naunyn Schmiedebergs Arch. Pharmacol.2015388996597210.1007/s00210‑015‑1127‑025902740
    [Google Scholar]
  18. MirajS. KianiS. Astragalus membranaceus: A review study of its anti-carcinoma activities.Pharm. Lett.2016865965
    [Google Scholar]
  19. ChenJ-P. LaiH-C. Immuno-potentiating effects of Astragalus polysaccharides: A mini-literature review.J Cancer Res Pract2020739910.4103/JCRP.JCRP_3_20
    [Google Scholar]
  20. LiW. SongK. WangS. ZhangC. ZhuangM. WangY. LiuT. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation.Mater. Sci. Eng. C20199868569510.1016/j.msec.2019.01.02530813073
    [Google Scholar]
  21. LiW. HuX. WangS. JiaoZ. SunT. LiuT. SongK. Characterization and anti-tumor bioactivity of Astragalus polysaccharides by immunomodulation.Int. J. Biol. Macromol.202014598599710.1016/j.ijbiomac.2019.09.18931669273
    [Google Scholar]
  22. YuJ. JiH. DongX. FengY. LiuA. Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways.Int. J. Biol. Macromol.201912681181910.1016/j.ijbiomac.2018.12.26830605746
    [Google Scholar]
  23. LiW. HuX. LiY. SongK. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1.J. Nat. Med.202175485487010.1007/s11418‑021‑01525‑x34043154
    [Google Scholar]
  24. TodorovaM.N. SavovaM.S. MihaylovaL.V. GeorgievM.I. Nurturing longevity through natural compounds: Where do we stand, and where do we go?Food Front.20245226731010.1002/fft2.350
    [Google Scholar]
  25. ZhouR. ChenH. ChenJ. ChenX. WenY. XuL. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway.BMC Complement. Altern. Med.20181818310.1186/s12906‑018‑2148‑229523109
    [Google Scholar]
  26. XiongJ. JiangB. LuoY. ZouJ. GaoX. XuD. DuY. HaoL. Multifunctional nanoparticles encapsulating Astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer.Int. J. Nanomedicine2020154151416910.2147/IJN.S24644732606670
    [Google Scholar]
  27. BimonteS BarbieriA PalmaG ReaD LucianoA D’AiutoM ArraC IzzoF Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer.Biomed Res Int2015201587813410.1155/2015/878134
    [Google Scholar]
  28. SuC.W. KaoS.H. ChenY.T. HsiehY.H. YangW.E. TsaiM.Y. LinC.W. YangS.F. Curcumin analog L48H37 induces apoptosis in human Oral cancer cells by activating caspase cascades and downregulating the inhibitor of apoptosis proteins through JNK/p38 signaling.Am. J. Chin. Med.202452256558110.1142/S0192415X2450024138480502
    [Google Scholar]
  29. TestaJ.R. BellacosaA. AKT plays a central role in tumorigenesis.Proc. Natl. Acad. Sci. USA20019820109831098510.1073/pnas.21143099811572954
    [Google Scholar]
  30. VivancoI. SawyersC.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer.Nat. Rev. Cancer20022748950110.1038/nrc83912094235
    [Google Scholar]
  31. LiS. ZhouY. WangR. ZhangH. DongY. IpC. Selenium sensitizes MCF-7 breast cancer cells to doxorubicin-induced apoptosis through modulation of phospho-Akt and its downstream substrates.Mol. Cancer Ther.2007631031103810.1158/1535‑7163.MCT‑06‑064317339365
    [Google Scholar]
  32. PizerE.S. ChrestF.J. DiGiuseppeJ.A. HanW.F. Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines.Cancer Res.19985820461146159788612
    [Google Scholar]
  33. WelshJ BakMJ Vitamin D and breast cancer: Past and present.J Steroid Biochem Mol Biol20181171520
    [Google Scholar]
  34. ChatterjeeS.J. PandeyS. Chemo-resistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy.Cancer Biol. Ther.201111221622810.4161/cbt.11.2.1379821088500
    [Google Scholar]
  35. AkkoçY. BerrakÖ. ArısanE.D. ObakanP. Çoker-GürkanA. Palavan-ÜnsalN. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells.Biomed. Pharmacother.20157116117110.1016/j.biopha.2015.02.02925960232
    [Google Scholar]
  36. ParkS. ChoD.H. AnderaL. SuhN. KimI. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins.Mol. Cell. Biochem.20133831-2394810.1007/s11010‑013‑1752‑123846485
    [Google Scholar]
  37. LvZ.D. LiuX.P. ZhaoW.J. DongQ. LiF.N. WangH.B. KongB. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int. J. Clin. Exp. Pathol.2014762818282425031701
    [Google Scholar]
  38. MasuelliL. BenvenutoM. FantiniM. MarzocchellaL. SacchettiP. Di StefanoE. TresoldiI. IzziV. BernardiniR. PalumboC. MatteiM. ListaF. GalvanoF. ModestiA. BeiR. Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice.J. Biol. Regul. Homeost. Agents201327110511923489691
    [Google Scholar]
  39. NishimuraF.G. SampaioB.B. KomotoT.T. da SilvaW.J. da CostaM.M.G. HaddadG.I. PeronniK.C. EvangelistaA.F. HossainM. DimmockJ.R. BandyB. BeleboniR.O. MarinsM. FachinA.L. Exploring CDKN1A upregulation mechanisms: Insights into cell cycle arrest induced by NC2603 curcumin analog in MCF-7 breast cancer cells.Int. J. Mol. Sci.2024259498910.3390/ijms2509498938732206
    [Google Scholar]
  40. SunX.D. LiuX. HuangD.S. Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression.Mol. Med. Rep.2012661267127010.3892/mmr.2012.110323023821
    [Google Scholar]
  41. FanH. LiangY. JiangB. LiX. XunH. SunJ. HeW. LauH.T. MaX. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.Oncol. Rep.20163552651265610.3892/or.2016.468226985864
    [Google Scholar]
  42. JiM. ChoiJ. LeeJ. LeeY. Induction of apoptosis by ar-turmerone on various cell lines.Int. J. Mol. Med.200414225325610.3892/ijmm.14.2.25315254774
    [Google Scholar]
  43. HuS. XuY. MengL. HuangL. SunH. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells.Exp. Ther. Med.20181621266127210.3892/etm.2018.634530116377
    [Google Scholar]
  44. OvadjeP. MaD. TremblayP. RomaA. SteckleM. GuerreroJ.A. ArnasonJ.T. PandeyS. Evaluation of the efficacy & biochemical mechanism of cell death induction by Piper longum extract selectively in in-vitro and in-vivo models of human cancer cells.PLoS One2014911e11325010.1371/journal.pone.011325025401766
    [Google Scholar]
  45. NguyenC. Anticancer activity of natural health products (dandelion root, lemongrass, and hibiscus extracts); a study of efficacy, interaction, and mechanism of action. 2019; Electronic Theses and Dissertations 7725Doctoral dissertation, University of Windsor (Canada)
    [Google Scholar]
  46. Gonzalez-CastejonM. VisioliF. Rodriguez-CasadoA. Różnorodna aktywność biologiczna mniszka lekarskiego.Nutr. Wersja.201270534547
    [Google Scholar]
  47. NassanM.A. SolimanM.M. IsmailS.A. El-ShazlyS. Effect of Taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats.Biosci. Rep.2018386BSR2018033410.1042/BSR2018033430126855
    [Google Scholar]
  48. ChenZ. Induction of apoptosis and mechanism of MDA-MB-231 cells by water extract of dandelion root.Zhongguo Yaolixue Tongbao20192019353358
    [Google Scholar]
  49. LiuY. ShiY. ZouJ. ZhangX. ZhaiB. GuoD. SunJ. LuanF. Extraction, purification, structural features, biological activities, modifications, and applications from Taraxacum mongolicum polysaccharides: A review.Int. J. Biol. Macromol.2024259Pt 212919310.1016/j.ijbiomac.2023.12919338191106
    [Google Scholar]
  50. ChatterjeeSJ OvadjeP MousaM HammC PandeyS The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells.Evid Based Complement Alternat Med2011201112904510.1155/2011/129045
    [Google Scholar]
  51. LamM. Cytotoxic activity of Fagonia cretica against human breast cancer cells. Available from: https://publications.aston.ac.uk/id/eprint/18276/Doctor of Philosophy, School of Biosciences2012
    [Google Scholar]
  52. UllahI. KhalilA.T. AliM. IqbalJ. AliW. AlarifiS. ShinwariZ.K. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities.Oxid. Med. Cell. Longev.2020202011410.1155/2020/121539533082906
    [Google Scholar]
  53. El DidiF.H. El-darierS. OmarE.M. Evaluation of the therapeutic anti-carcinogenic effect of fagonia arabica on oral squamous cell carcinoma (an in vitro study).Alex. Dent. J.20244911016
    [Google Scholar]
  54. LamM. CarmichaelA.R. GriffithsH.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression.PLoS One201276e4015210.1371/journal.pone.004015222761954
    [Google Scholar]
  55. KourR. SharmaN. SinghM. KumarS. kaurS. Cassia fistula L. bark fraction modulated GSK3β/ p53 expression for mitochondrial mediated apoptosis in HeLa cells.S. Afr. J. Bot.2024168466010.1016/j.sajb.2024.03.018
    [Google Scholar]
  56. LamM. WolffK. GriffithsH. CarmichaelA. Correction: An aqueous extract of fagonia cretica induces dna damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression.PLoS One201497e10265510.1371/journal.pone.0102655
    [Google Scholar]
  57. SaleemS. Biological evaluation, isolation and characterization of compounds from Fagonia cretica L. Available from: http://142.54.178.187:9060/xmlui/handle/123456789/10174Doctoral dissertation, Quaid-I-Azam University, Islamabad2015
    [Google Scholar]
  58. KumbiY. Phytochemical characterization of Fagonia indica and its effects on MCF-7 breast cancer cell line.Nat Prod Commun.202217710
    [Google Scholar]
  59. GuY. ZhengQ. FanG. LiuR. Advances in anti-cancer activities of flavonoids in Scutellariae radix: Perspectives on mechanism.Int. J. Mol. Sci.202223191104210.3390/ijms23191104236232344
    [Google Scholar]
  60. PowellC.B. FungP. JacksonJ. Dall’EraJ. LewkowiczD. CohenI. Smith-McCuneK. Aqueous extract of herba Scutellaria barbatae, a chinese herb used for ovarian cancer, induces apoptosis of ovarian cancer cell lines.Gynecol. Oncol.200391233234010.1016/j.ygyno.2003.07.00414599863
    [Google Scholar]
  61. ParkJ.R. LeeM.C. MoonS.C. KimJ. HaK.T. ParkE.J. HongC. SeoB.D. KimB.J. Scutellaria barbatae Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells.Mol. Med. Rep.20171622302230810.3892/mmr.2017.679828627691
    [Google Scholar]
  62. HouC. WenX. YanS. GuX. JiangY. ChenF. LiuY. ZhuY. LiuX. Network-based pharmacology-based research on the effect and mechanism of the Hedyotis diffusa–Scutellaria Barbata pair in the treatment of hepatocellular carcinoma.Sci. Rep.202414196310.1038/s41598‑023‑50696‑y38200019
    [Google Scholar]
  63. WangC.Z. LiX.L. WangQ.F. MehendaleS.R. YuanC.S. Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells.Phytomedicine2010171636810.1016/j.phymed.2009.07.00319836937
    [Google Scholar]
  64. RidhoFM IqbalM AgustinaAW JulyantoA Mechanism of apoptosis induction in oral cancer cells by uncaria-derived flavonoids.Rumah Jurnal UIN Alauddin20236542944
    [Google Scholar]
  65. ZariA. AlfarteeshH. BucknerC. LafrenieR. Treatment with Uncaria tomentosa promotes apoptosis in B16-BL6 mouse melanoma cells and inhibits the growth of B16-BL6 tumours.Molecules2021264106610.3390/molecules2604106633670520
    [Google Scholar]
  66. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  67. RahmawatiN IsmailNH HamidiD WahyuniFS Cytotoxic activity screening of various Uncaria spp plants on t47d breast cancer cells.Trop J Nat Prod Res20237122182221
    [Google Scholar]
  68. SordiR. CastroS.N. LeraA.T. IreneM.N. FarinazzoM.M. SetteC. Iracema Gomes CuberoD. Castro BaccarinA.L. GiglioA. Randomized, double-blind, placebo-controlled phase ii clinical trial on the use of Uncaria tomentosa (Cat’s claw) for aromatase inhibitor-induced arthralgia: A pilot study.J. Nat. Rem.2019191243110.18311/jnr/2019/22867
    [Google Scholar]
  69. Santos AraújoM.C. FariasI.L. GutierresJ. DalmoraS.L. FloresN. FariasJ. CruzI. ChiesaJ. MorschV.M. Chitolina SchetingerM.R. Uncaria tomentosa—adjuvant treatment for breast cancer: Clinical trial.Evid. Based Complement. Alternat. Med.201220121810.1155/2012/67698422811748
    [Google Scholar]
  70. AljehaniA. Treatment with extracts of Uncaria tomentosa promotes apoptosis in the human breast cancer cell line, MCF7.Doctoral dissertation, Laurentian University of Sudbury2015
    [Google Scholar]
  71. Tahmasebi EnferadiS SalimizadehZ MahjoubiF. Efficiency of ß-carbolines presented in the seeds of Peganum harmala L. as antiproliferative agent against breast cancer cell line.JMPB20231245058511
    [Google Scholar]
  72. HollidayD.L. SpeirsV. Choosing the right cell line for breast cancer research.Breast Cancer Res.201113421510.1186/bcr288921884641
    [Google Scholar]
  73. SubikK. LeeJ.F. BaxterL. StrzepekT. CostelloD. CrowleyP. XingL. HungM.C. BonfiglioT. HicksD.G. TangP. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines.Breast Cancer (Auckl.)2010410.1177/11782234100040000420697531
    [Google Scholar]
  74. SaleemA. HusheemM. HärkönenP. PihlajaK. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit.J. Ethnopharmacol.200281332733610.1016/S0378‑8741(02)00099‑512127233
    [Google Scholar]
  75. RivaL. CoradiniD. Di FronzoG. De FeoV. De TommasiN. De SimoneF. PizzaC. The antiproliferative effects of Uncaria tomentosa extracts and fractions on the growth of breast cancer cell line.Anticancer Res.2001214A2457246111724307
    [Google Scholar]
  76. De MartinoL. MartinotJ.L.S. FranceschelliS. LeoneA. PizzaC. De FeoV. Proapoptotic effect of Uncaria tomentosa extracts.J. Ethnopharmacol.20061071919410.1016/j.jep.2006.02.01316569487
    [Google Scholar]
  77. SinghV. KumarK. PurohitD. VermaR. PandeyP. BhatiaS. MalikV. MittalV. RahmanM.H. AlbadraniG.M. ArafahM.W. El-DemerdashF.M. AkhtarM.F. SaleemA. KamelM. NajdaA. Abdel-DaimM.M. KaushikD. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer.Biomed. Pharmacother.202113911158410.1016/j.biopha.2021.11158434243623
    [Google Scholar]
  78. TorY.S. YazanL.S. FooJ.B. ArmaniaN. CheahY.K. AbdullahR. ImamM.U. IsmailN. IsmailM. Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa.BMC Complement. Altern. Med.20141415510.1186/1472‑6882‑14‑5524524627
    [Google Scholar]
  79. TanWN SamlingBA TongWY ChearNJ YusofSR LimJW TchamgoueJ LeongCR RamanathanS Chitosan-based nanoencapsulated essential oils: Potential leads against breast cancer cells in preclinical studies.Polymers (Basel)2024164478
    [Google Scholar]
  80. IjazS. IqbalJ. AbbasiB.A. UllahZ. YaseenT. KanwalS. MahmoodT. SydykbayevaS. YdyrysA. AlmarhoonZ.M. Sharifi-RadJ. HanoC. CalinaD. ChoW.C. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications.Biomed. Pharmacother.202316211468710.1016/j.biopha.2023.11468737062215
    [Google Scholar]
  81. Shiv K. Avneet G, Karan S, Amar D, Rohit T, ThakurR. Important role of herbal extracts in the management of breast cancer.Int. J. Ayurveda Pharma Res.202320239210010.47070/ijapr.v11i10.3003
    [Google Scholar]
  82. Center for Disease Control (US), Centers for Disease Control, Prevention (US)Morbidity and mortality weekly report.2000Available From: https://www.cdc.gov/mmwr/index2022.html
  83. DobbGJ EdisRH Coma and neuropathy after ingestion of herbal laxative containing podophyllin.Med J Aust19841408495610.5694/j.1326‑5377.1984.tb108174.x
    [Google Scholar]
  84. ChanH. YehY-Y. BillmeierG.J. EvansW.E. ChanH. Lead poisoning from ingestion of Chinese herbal medicine.Clin. Toxicol.197710327328110.3109/15563657708992423405174
    [Google Scholar]
  85. ParsonsJS Contaminated herbal tea as a potential source of chronic arsenic poisoning.N C Med J1981421389
    [Google Scholar]
  86. KleijnenJ. KnipschildP. Ginkgo biloba.Lancet199234088281136113910.1016/0140‑6736(92)93158‑J1359218
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013303288240730061019
Loading
/content/journals/cnf/10.2174/0115734013303288240730061019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; breast cancer cells; caspase; Herbal therapy; herbals; targeted therapy; tumour
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test