Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Animal- and plant-based foods are considered staple foods worldwide. As the population increases, new alternative foods with higher nutritional value and sustainable nature are needed. Moreover, the current food system drastically impacts the environment and may result in unsustainability. The livestock sector significantly contributes to greenhouse gas emissions and is a major user of land and water resources. Additionally, excessive animal farming adversely affects the environment, accelerating climate change. To solve these problems, alternative and eco-friendly food resources that offer proper nutritional and health benefits are needed. Although edible insects have been used through several civilizations, they have emerged as an exciting and promising approach. Edible insects can transform various organic products into high-quality proteins with essential amino acids, including agricultural and food waste products. Edible insects are nutritionally rich and contain healthy fatty acids such as lauric acid, oleic acid, and omega 3 and 6. In addition, edible insect production requires much less resources, such as water and land, and emits significantly less greenhouse gases, thus contributing to sustainable food production. This review provides a comprehensive understanding of the nutritional profile, sustainability aspects, and health benefits of edible insects.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013288788240405053034
2024-04-18
2025-01-30
Loading full text...

Full text loading...

References

  1. Population: The numbers - Population matters.2022Available from: https://populationmatters.org/the-facts-numbers/
  2. O’NeillD.W. FanningA.L. LambW.F. SteinbergerJ.K. A good life for all within planetary boundaries.Nat. Sustain.20181889510.1038/s41893‑018‑0021‑4
    [Google Scholar]
  3. van MeijlH. HavlikP. Lotze-CampenH. StehfestE. WitzkeP. DomínguezI.P. BodirskyB.L. van DijkM. DoelmanJ. FellmannT. HumpenöderF. KoopmanJ.F.L. MüllerC. PoppA. TabeauA. ValinH. van ZeistW-J. Comparing impacts of climate change and mitigation on global agriculture by 2050.Environ. Res. Lett.201813606402110.1088/1748‑9326/aabdc4
    [Google Scholar]
  4. PimentelD. BurgessM. World human population problems.Encyclopedia of the Anthropocene20181–531331710.1016/B978‑0‑12‑809665‑9.09303‑4
    [Google Scholar]
  5. GuinéR.P.F. SoutaA. GürbüzB. AlmeidaE. LourençoJ. MarquesL. Textural properties of newly developed cookies incorporating whey residue.J. Culin. Sci. Tech.201918317332
    [Google Scholar]
  6. CappelliA. OlivaN. BonaccorsiG. LoriniC. CiniE. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour?Lebensm. Wiss. Technol.202011810886710.1016/j.lwt.2019.108867
    [Google Scholar]
  7. BaianoA. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications.Trends Food Sci. Technol.2020100355010.1016/j.tifs.2020.03.040
    [Google Scholar]
  8. KimT.K. YongH.I. KimY.B. KimH.W. ChoiY.S. Edible insects as a protein source: A review of public perception, processing technology, and research trends.Food Sci. Anim. Resour.201939452154010.5851/kosfa.2019.e5331508584
    [Google Scholar]
  9. ImathiuS. Benefits and food safety concerns associated with consumption of edible insects.NFS J.20201811110.1016/j.nfs.2019.11.002
    [Google Scholar]
  10. TaoJ. LiY.O. Edible insects as a means to address global malnutrition and food insecurity issues.Food Qual. Saf.201821172610.1093/fqsafe/fyy001
    [Google Scholar]
  11. RaheemD. RaposoA. OluwoleO.B. NieuwlandM. SaraivaA. CarrascosaC. Entomophagy: Nutritional, ecological, safety and legislation aspects.Food Res. Int.201912610867210.1016/j.foodres.2019.10867231732082
    [Google Scholar]
  12. PayneC.L.R. ScarboroughP. RaynerM. NonakaK. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition.Eur. J. Clin. Nutr.201670328529110.1038/ejcn.2015.14926373961
    [Google Scholar]
  13. HalloranA. MuenkeC. VantommeP. van HuisA. van HuisA. Insects in the human food chain: global status and opportunities.Food Chain20144210311810.3362/2046‑1887.2014.011
    [Google Scholar]
  14. CappelliA. CiniE. LoriniC. OlivaN. BonaccorsiG. Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development.Food Control202010810687710.1016/j.foodcont.2019.106877
    [Google Scholar]
  15. GiampieriF. SuarezA.J.M. MachìM. CianciosiD. HortalN.M.D. BattinoM. Edible insects: A novel nutritious, functional, and safe food alternative.Food Front.20223335836510.1002/fft2.167
    [Google Scholar]
  16. DoiH GałęckiR MuliaRN The merits of entomophagy in the post COVID-19 world.Trends Food Sci Technol2021110849
    [Google Scholar]
  17. MuliaR.N. DoiH. Global simulation of insect meat production under climate change.Front. Sustain. Food Syst.201939110.3389/fsufs.2019.00091
    [Google Scholar]
  18. BerggrenÅ. JanssonA. LowM. Approaching ecological sustainability in the emerging insects-as-food industry.Trends Ecol. Evol.201934213213810.1016/j.tree.2018.11.00530655013
    [Google Scholar]
  19. HalloranA. RoosN. EilenbergJ. CeruttiA. BruunS. Life cycle assessment of edible insects for food protein: A review.Agron. Sustain. Dev.20163645710.1007/s13593‑016‑0392‑832010238
    [Google Scholar]
  20. SejianV. BhattaR. MalikP.K. MadiajaganB. HosniY.A.S.A. SullivanM. GaughanJ.B. Livestock as sources of greenhouse gases and its significance to climate change.Greenhouse GasesIntechOpen2016
    [Google Scholar]
  21. OonincxD.G.A.B. van ItterbeeckJ. HeetkampM.J.W. van den BrandH. van LoonJ.J.A. van HuisA. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.PLoS One2010512e1444510.1371/journal.pone.001444521206900
    [Google Scholar]
  22. BurekP. SatohY. FischerG. KahilM.T. ScherzerA. TramberendS. Water futures and solution - fast track initiative (final report).Report No.: WP-16-0062016
    [Google Scholar]
  23. BorettiA. RosaL. Reassessing the projections of the world water development report.Npj Clean Water2019216
    [Google Scholar]
  24. BaoH.X.H. SongY. Improving food security through entomophagy: Can behavioural interventions influence consumer preference for edible insects?Sustainability2022143875
    [Google Scholar]
  25. MasonJ.B. BlackR. BoothS.L. BrentanoA. BroadbentB. ConnollyP. FinleyJ. GoldinJ. GriffinT. HagenK. LesnikJ. LewisG. PanZ. RamosJ.M. RanalliM. RojasG. ShockleyM. StullV.J. SwietlikD. Fostering strategies to expand the consumption of edible insects: The value of a tripartite coalition between academia, industry, and government.Curr. Dev. Nutr.201828nzy05610.1093/cdn/nzy05630140788
    [Google Scholar]
  26. NowakowskiA.C. MillerA.C. MillerM.E. XiaoH. WuX. Potential health benefits of edible insects.Crit Rev Food Sci Nutr202162:3499.3508
    [Google Scholar]
  27. BanjoA. LawalO. SongonugaE. The nutritional value of fourteen species of edible insects in southwestern Nigeria.Afr. J. Biotechnol.20165298301
    [Google Scholar]
  28. VenneC.T.A. PinckaersP.J.M. van LoonJ.J.A. van LoonL.J.C. Consideration of insects as a source of dietary protein for human consumption.Nutr. Rev.201775121035104510.1093/nutrit/nux05729202184
    [Google Scholar]
  29. DobermannD. SwiftJ.A. FieldL.M. Opportunities and hurdles of edible insects for food and feed.Nutr. Bull.201742429330810.1111/nbu.12291
    [Google Scholar]
  30. von HackewitzL. The house cricket Acheta domesticus, a potential source of protein for human consumption.FAFNR2018201817
    [Google Scholar]
  31. KinyuruJ.N. MogendiJ.B. RiwaC.A. Ndung’uN.W. Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge.Anim. Front.201551419
    [Google Scholar]
  32. ZhouY. WangD. ZhouS. DuanH. GuoJ. YanW. Nutritional composition, health benefits, and application value of edible insects: A review.Foods2022113961
    [Google Scholar]
  33. GhoshS. LeeS.M. JungC. RochowM.V.B. Nutritional composition of five commercial edible insects in South Korea.J. Asia Pac. Entomol.201720268669410.1016/j.aspen.2017.04.003
    [Google Scholar]
  34. RoosN. Insects and human nutrition.Edible Insects in Sustainable Food SystemsSpringer2018839110.1007/978‑3‑319‑74011‑9_5
    [Google Scholar]
  35. MagaraHJO NiassyS AyiekoMA MukundamagoM EgonyuJP TangaCM Edible crickets (Orthoptera) around the world: Distribution, nutritional value, and other benefits—A review.Front Nutr20217537915
    [Google Scholar]
  36. VoelkerR. Can insects compete with beef, poultry as nutritional powerhouses?JAMA2019321543944110.1001/jama.2018.2074730649155
    [Google Scholar]
  37. GumulD. OraczJ. KowalskiS. MikulecA. SkotnickaM. KarwowskaK. AreczukA. Bioactive compounds and antioxidant composition of nut bars with addition of various edible insect flours.Molecules2023288355610.3390/molecules2808355637110790
    [Google Scholar]
  38. QianL. DengP. ChenF. CaoY. SunH. LiaoH. The exploration and utilization of functional substances in edible insects: A review.Food Prod. Process. Nutr.2022411510.1186/s43014‑022‑00090‑4
    [Google Scholar]
  39. PaolettiM.G. NorbertoL. DaminiR. MusumeciS. Human gastric juice contains chitinase that can degrade chitin.Ann. Nutr. Metab.200751324425110.1159/00010414417587796
    [Google Scholar]
  40. MuzzarelliR.A.A. BoudrantJ. MeyerD. MannoN. DeMarchisM. PaolettiM.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial.Carbohydr. Polym.2012872995101210.1016/j.carbpol.2011.09.063
    [Google Scholar]
  41. FinkeM.D. Estimate of chitin in raw whole insects.Zoo Biol.200726210511510.1002/zoo.2012319360565
    [Google Scholar]
  42. SchmidtA. CallL.M. MacheinerL. MayerH.K. Determination of vitamin B12 in four edible insect species by immunoaffinity and ultra-high performance liquid chromatography.Food Chem.201928112412910.1016/j.foodchem.2018.12.03930658738
    [Google Scholar]
  43. RumpoldB.A. SchlüterO. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing.Anim. Front.201552024
    [Google Scholar]
  44. MontowskaM. KowalczewskiP.Ł. RybickaI. FornalE. Nutritional value, protein and peptide composition of edible cricket powders.Food Chem.201928913013810.1016/j.foodchem.2019.03.06230955594
    [Google Scholar]
  45. Van HuisA. Potential of insects as food and feed in assuring food security.Annu Rev Entomol.20135856358310.1146/annurev‑ento‑120811‑153704
    [Google Scholar]
  46. HanR. ShinJ.T. KimJ. ChoiY.S. KimY.W. An overview of the South Korean edible insect food industry: Challenges and future pricing/promotion strategies.Entomol. Res.201747314115110.1111/1748‑5967.12230
    [Google Scholar]
  47. PARTY BUGS SHOPAvailable from: https://shop.partybugs.com/en/
  48. Bugvita.Available from: https://www.bugvita.com/shop
  49. All Edible Insect Products – Eat Crawlers.Available from: https://eatcrawlers.co.nz/collections/edible-insects
  50. Thailand unique.Available from: https://www.thailandunique.com/
  51. ElorduyR.B.J. The importance of edible insects in the nutrition and economy of people of the rural areas of Mexico.Ecol. Food Nutr.2010365347366
    [Google Scholar]
  52. MutungiC. IrunguF.G. NdukoJ. MutuaF. AffognonH. NakimbugweD. EkesiS. FiaboeK.K.M. Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development.Crit. Rev. Food Sci. Nutr.201959227629810.1080/10408398.2017.136533028853909
    [Google Scholar]
  53. NetshifhefheS.R. KunjekuE.C. DuncanF.D. Human uses and indigenous knowledge of edible termites in vhembe district, limpopo province, South Africa.S. Afr. J. Sci.20181141/21010.17159/sajs.2018/20170145
    [Google Scholar]
  54. MmariM.W. KinyuruJ.N. LaswaiH.S. OkothJ.K. Traditions, beliefs and indigenous technologies in connection with the edible longhorn grasshopper Ruspolia differens (Serville 1838) in Tanzania.J. Ethnobiol. Ethnomed.20171316010.1186/s13002‑017‑0191‑629132398
    [Google Scholar]
  55. LautenschlägerT. NeinhuisC. MoniziM. MandombeJ.L. FörsterA. HenleT. Edible insects of Northern Angola.Afr. Invertebrat.2017582558210.3897/afrinvertebr.58.21083
    [Google Scholar]
  56. GhoshS. JungC. Meyer-RochowV.B. DekeboA. Perception of entomophagy by residents of Korea and Ethiopia revealed through structured questionnaire.J. Insects Food Feed202061596410.3920/JIFF2019.0013
    [Google Scholar]
  57. HalloranA. FloreR. VantommeP. RoosN. Edible Insects in Sustainable Food SystemsSpringer2018147910.1007/978‑3‑319‑74011‑9
    [Google Scholar]
  58. MishynaM. MartinezJ.J.I. ChenJ. BenjaminO. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera).Food Res. Int.201911669770610.1016/j.foodres.2018.08.09830716997
    [Google Scholar]
  59. PurschkeB. MeinlschmidtP. HornC. RiederO. JägerH. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis.Eur. Food Res. Technol.20182446999101310.1007/s00217‑017‑3017‑9
    [Google Scholar]
  60. AzzolliniD. DerossiA. FoglianoV. LakemondC.M.M. SeveriniC. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks.Innov. Food Sci. Emerg. Technol.20184534435310.1016/j.ifset.2017.11.017
    [Google Scholar]
  61. LalanneM.G. ÁlvarezH.A.J. CastroS.A. Edible insects processing: Traditional and innovative technologies.Compr. Rev. Food Sci. Food Saf.20191841166119110.1111/1541‑4337.1246333336989
    [Google Scholar]
  62. HaberM. MishynaM. MartinezJ.J.I. BenjaminO. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties.Lebensm. Wiss. Technol.201911510839510.1016/j.lwt.2019.108395
    [Google Scholar]
  63. OsimaniA. MilanovićV. CardinaliF. RoncoliniA. GarofaloC. ClementiF. PasquiniM. MozzonM. FoligniR. RaffaelliN. ZamporliniF. AquilantiL. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation.Innov. Food Sci. Emerg. Technol.20184815016310.1016/j.ifset.2018.06.007
    [Google Scholar]
  64. NissenL. SamaeiS.P. BabiniE. GianottiA. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization.Food Chem.202033312741010.1016/j.foodchem.2020.12741032682227
    [Google Scholar]
  65. BiróB. FodorR. SzedljakI. HuszárP.K. GereA. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation.Lebensm. Wiss. Technol.201911610854210.1016/j.lwt.2019.108542
    [Google Scholar]
  66. KimH.W. SetyabrataD. LeeY. JonesO.G. KimY.H.B. Effect of house cricket ( Acheta domesticus ) flour addition on physicochemical and textural properties of meat emulsion under various formulations.J. Food Sci.201782122787279310.1111/1750‑3841.1396029095501
    [Google Scholar]
  67. OlivadeseM. DindoM.L. Edible insects: A historical and cultural perspective on entomophagy with a focus on western societies.Insects20231469010.3390/insects14080690
    [Google Scholar]
  68. BaróR.M. AgustenchC.P. RizzoloD.D.A. BayerB.L. AcostaA.F. MartínezA.A. Edible insect consumption for human and planetary health: A systematic review.Int. J. Environ. Res. Public Health.2022191165310.3390/ijerph191811653
    [Google Scholar]
  69. HlongwaneZT SlotowR MunyaiTC Indigenous knowledge about consumption of edible insects in South Africa.Insects202112119
    [Google Scholar]
  70. CastroM. ChambersE.IV Willingness to eat an insect based product and impact on brand equity: A global perspective.J. Sens. Stud.2019342e1248610.1111/joss.12486
    [Google Scholar]
  71. MarquisD. EthierH.L. LeBelJ. Edible insect marketing in Western countries: Wisely weighing the foodstuff, the foodie, and the foodscape.J. Insects Food Feed.20206434135410.3920/JIFF2018.0037
    [Google Scholar]
  72. LiM. MaoC. LiX. JiangL. ZhangW. LiM. Edible insects: A new sustainable nutritional resource worth promoting.Foods202312407310.3390/foods12224073
    [Google Scholar]
  73. SzczepanskiL. DupontJ. SchadeF. HellbergH. BüscherM. FiebelkornF. Effectiveness of a teaching unit on the willingness to consume insect-based food – An intervention study with adolescents from Germany.Front. Nutr.2022988980510.3389/fnut.2022.88980536276833
    [Google Scholar]
  74. PuteriB. JahnkeB. ZanderK. Booming the bugs: How can marketing help increase consumer acceptance of insect-based food in Western countries?Appetite202318710659410.1016/j.appet.2023.10659437178930
    [Google Scholar]
  75. AlhujailiA. NocellaG. MacreadyA. Insects as food: Consumers’ acceptance and marketing.Foods202312488610.3390/foods1204088636832961
    [Google Scholar]
  76. van HuisA. RumpoldB. Strategies to convince consumers to eat insects? A review.Food Qual. Prefer.202311010492710.1016/j.foodqual.2023.104927
    [Google Scholar]
  77. StullV.J. FinerE. BergmansR.S. FebvreH.P. LonghurstC. ManterD.K. PatzJ.A. WeirT.L. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial.Sci. Rep.2018811076210.1038/s41598‑018‑29032‑230018370
    [Google Scholar]
  78. LiaqatF. EltemR. Chitooligosaccharides and their biological activities: A comprehensive review.Carbohydr. Polym.2018184243259Available from: https://pubmed.ncbi.nlm.nih.gov/29352917/ 10.1016/j.carbpol.2017.12.06729352917
    [Google Scholar]
  79. IslamM.M. YangC.J. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks.Poult. Sci.2017961273410.3382/ps/pew22027520069
    [Google Scholar]
  80. MaronoS. LoponteR. LombardiP. VassalottiG. PeroM.E. RussoF. GascoL. ParisiG. PiccoloG. NizzaS. Di MeoC. AttiaY.A. BoveraF. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age.Poult. Sci.20179661783179010.3382/ps/pew46128339710
    [Google Scholar]
  81. XiaZ. ChenJ. WuS. Hypolipidemic activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect.Int. J. Biol. Macromol.201359969810.1016/j.ijbiomac.2013.04.01723591472
    [Google Scholar]
  82. MentangF. MaitaM. UshioH. OhshimaT. Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats.Food Chem.2011127389990410.1016/j.foodchem.2011.01.04525214076
    [Google Scholar]
  83. AhnM.Y. KimB.J. KimH.J. JinJ.M. YoonH.J. HwangJ.S. Glycosaminoglycan derived from field cricket and its inhibition activity of diabetes based on anti-oxidative action.201910.20944/preprints201903.0136.v1
    [Google Scholar]
  84. SeoM. GooT.W. ChungM.Y. BaekM. HwangJ.S. KimM.A. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice.Int. J. Mol. Sci.201718518
    [Google Scholar]
  85. SeoM. KimJ. MoonS.S. HwangJ.S. KimM.A. Intraventricular administration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet–induced obesity.Nutr. Res.201744182610.1016/j.nutres.2017.05.01128821314
    [Google Scholar]
  86. ChungM.Y. YoonY-I. HwangJ.S. GooT.W. YunE.Y. Anti-obesity effect of A llomyrina dichotoma ( A rthropoda: I nsecta) larvae ethanol extract on 3T3-L1 adipocyte differentiation.Entomol. Res.201444191610.1111/1748‑5967.12044
    [Google Scholar]
  87. AhnM.Y. HwangJ.S. KimM.J. ParkK.K. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet.Arch. Pharm. Res.201639792693610.1007/s12272‑016‑0749‑127138285
    [Google Scholar]
  88. BorrelliL. CorettiL. DipinetoL. BoveraF. MennaF. ChiariottiL. NizzaA. LemboF. FiorettiA. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens.Sci. Rep.2017711626910.1038/s41598‑017‑16560‑629176587
    [Google Scholar]
  89. ZielińskaE. BaraniakB. KaraśM. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects.Nutrients2017997010.3390/nu9090970
    [Google Scholar]
  90. MessinaC.M. GaglioR. MorgheseM. ToloneM. ArenaR. MoschettiG. Microbiological profile and bioactive properties of insect powders used in food and feed formulations.Foods2019840010.3390/foods8090400
    [Google Scholar]
  91. Di MattiaC. BattistaN. SacchettiG. SerafiniM. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates.Front. Nutr.2019610610.3389/fnut.2019.0010631380385
    [Google Scholar]
  92. SpranghersT. MichielsJ. VrancxJ. OvynA. EeckhoutM. De ClercqP. De SmetS. Gut antimicrobial effects and nutritional value of black soldier fly ( Hermetia illucens L.) prepupae for weaned piglets.Anim. Feed Sci. Technol.2018235334210.1016/j.anifeedsci.2017.08.012
    [Google Scholar]
  93. AhnM.Y. RyuK.S. LeeY.W. KimY.S. Cytotoxicity and L-amino acid oxidase activity of crude insect drugs.Arch. Pharmacal Res.2000235
    [Google Scholar]
  94. JiY.J. LiuH.N. KongX.F. BlachierF. GengM.M. LiuY.Y. YinY.L. Use of insect powder as a source of dietary protein in early-weaned piglets1.J. Anim. Sci.201694S311111610.2527/jas.2015‑9555
    [Google Scholar]
  95. HongK.S. YunS.M. ChoJ.M. LeeD.Y. JiS.D. SonJ.G. KimE-H. Silkworm ( Bombyx mori ) powder supplementation alleviates alcoholic fatty liver disease in rats.J. Funct. Foods201843293610.1016/j.jff.2018.01.018
    [Google Scholar]
  96. RaheemD. CarrascosaC. OluwoleO.B. NieuwlandM. SaraivaA. MillánR. Traditional consumption of and rearing edible insects in Africa, Asia and Europe.Crit Rev Food Sci Nutr.20185921692188
    [Google Scholar]
  97. LiceagaA.M. Edible insects, a valuable protein source from ancient to modern times.Adv. Food Nutr. Res.202210112915210.1016/bs.afnr.2022.04.00235940702
    [Google Scholar]
  98. Pérez-LlorénsJ.L. Entomogastronomy, a step beyond just eating insects.Insects as Food and Food Ingredients Technological Improvements Sustainability and Safety AspectsAcademic Press202419121410.1016/B978‑0‑323‑95594‑2.00005‑7
    [Google Scholar]
  99. HalloranA. VantommeP. HanboonsongY. EkesiS. Regulating edible insects: The challenge of addressing food security, nature conservation, and the erosion of traditional food culture.Food Secur.20157373974610.1007/s12571‑015‑0463‑8
    [Google Scholar]
  100. Richter ReisF. Blanching in the food industry.Thermal processing of food products by steam and hot Water: Unit operations and processing equipment in the food industryElsevier202321124610.1016/B978‑0‑12‑818616‑9.00007‑9
    [Google Scholar]
  101. OjhaS. BußlerS. PsarianosM. RossiG. SchlüterO.K. Edible insect processing pathways and implementation of emerging technologies.J. Insects Food Feed2021787790010.3920/JIFF2020.0121
    [Google Scholar]
  102. MenozziD. SogariG. VenezianiM. SimoniE. MoraC. Eating novel foods: An application of the Theory of Planned Behaviour to predict the consumption of an insect-based product.Food Qual. Prefer.201759273410.1016/j.foodqual.2017.02.001
    [Google Scholar]
  103. FombongF.T. Van Der BorghtM. BroeckV.J. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect ruspolia differens.Insects2017810210.3390/insects8030102
    [Google Scholar]
  104. SsepuuyaG. AringoR.O. MukisaI.M. NakimbugweD. Effect of processing, packaging and storage-temperature based hurdles on the shelf stability of sautéed ready-to-eat Ruspolia nitidula. J. Insects Food Feed20162424525310.3920/JIFF2016.0006
    [Google Scholar]
  105. KamauE. MutungiC. KinyuruJ. ImathiuS. TangaC. AffognonH. EkesiS. NakimbugweD. FiaboeK.K.M. Moisture adsorption properties and shelf-life estimation of dried and pulverised edible house cricket Acheta domesticus (L.) and black soldier fly larvae Hermetia illucens (L.).Food Res. Int.201810642042710.1016/j.foodres.2018.01.01229579943
    [Google Scholar]
  106. van der KlerxF.H.J. CamenzuliL. BellucoS. MeijerN. RicciA. Food safety issues related to uses of insects for feeds and foods.Compr. Rev. Food Sci. Food Saf.20181751172118310.1111/1541‑4337.1238533350154
    [Google Scholar]
  107. de GierS. VerhoeckxK. Insect (food) allergy and allergens.Mol. Immunol.20181008210610.1016/j.molimm.2018.03.01529731166
    [Google Scholar]
  108. PomaG. CuykxM. AmatoE. CalapriceC. FocantJ.F. CovaciA. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.Food Chem. Toxicol.2017100707910.1016/j.fct.2016.12.00628007452
    [Google Scholar]
  109. SsepuuyaG. WynantsE. VerrethC. CrauwelsS. LievensB. ClaesJ. NakimbugweD. Van CampenhoutL. Microbial characterisation of the edible grasshopper Ruspolia differens in raw condition after wild-harvesting in Uganda.Food Microbiol.20197710611710.1016/j.fm.2018.09.00530297041
    [Google Scholar]
  110. WynantsE. CrauwelsS. LievensB. LucaS. ClaesJ. BorremansA. BruyninckxL. Van CampenhoutL. Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae ( Tenebrio molitor ).Innov. Food Sci. Emerg. Technol.20174281510.1016/j.ifset.2017.06.004
    [Google Scholar]
  111. GuanY. ChenJ. NepovimovaE. LongM. WuW. KucaK. Aflatoxin detoxification using microorganisms and enzymes.Toxins2021134610.3390/toxins13010046
    [Google Scholar]
  112. GałęckiR. SokółR. A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals.PLoS One2019147e021930310.1371/journal.pone.021930331283777
    [Google Scholar]
  113. Regulation (EU) 2015/2283 of the european parliament and of the council.OJEU20152015122
    [Google Scholar]
  114. ManciniS. MoruzzoR. RiccioliF. PaciG. European consumers’ readiness to adopt insects as food. A review.Food Res. Int.201912266167810.1016/j.foodres.2019.01.04131229126
    [Google Scholar]
  115. OkyereA.A. Food safety management of insect-based foods.Food Safety Management202322323310.1016/B978‑0‑12‑820013‑1.00036‑X
    [Google Scholar]
  116. MaroneP.A. Food safety and regulatory concerns.Insects as Sustainable Food Ingredients Production, Processing and Food ApplicationsAcademic Press201620322110.1016/B978‑0‑12‑802856‑8.00007‑7
    [Google Scholar]
  117. Żuk-GołaszewskaK. GałęckiR. ObremskiK. SmetanaS. FigielS. GołaszewskiJ. Edible insect farming in the context of the EU regulations and marketing—An overview.Insects202213(5): 446.446
    [Google Scholar]
  118. JoY.H. LeeJ.W. Insect feed for animals under the H azard A nalysis and C ritical C ontrol P oints ( HACCP ) regulations.Entomol. Res.20164612410.1111/1748‑5967.12157
    [Google Scholar]
  119. DelgadoL. GarinoC. MorenoF.J. ZagonJ. BrollH. Sustainable food systems: EU regulatory framework and contribution of insects to the farm-to-fork strategy.Food Rev. Int.20233996955697610.1080/87559129.2022.2130354
    [Google Scholar]
  120. MwangiM.N. OonincxD.G.A.B. HummelM. UtamiD.A. GunawanL. VeenenbosM. ZederC. CercamondiC.I. ZimmermannM.B. van LoonJ.J.A. DickeM. BoonstraM.A. Absorption of iron from edible house crickets: A randomized crossover stable-isotope study in humans.Am. J. Clin. Nutr.202211641146115610.1093/ajcn/nqac22336026477
    [Google Scholar]
  121. VangsoeM.T. ThogersenR. BertramH.C. HeckmannL.H.L. HansenM. Ingestion of insect protein isolate enhances blood amino acid concentrations similar to soy protein in a human trial.Nutrients201810135710.3390/nu10101357
    [Google Scholar]
  122. VangsoeM.T. JoergensenM.S. HeckmannL.H.L. HansenM. Effects of insect protein supplementation during resistance training on changes in muscle mass and strength in young men.Nutrients20181033510.3390/nu10030335
    [Google Scholar]
  123. BausermanM. LokangakaA. GadoJ. CloseK. WallaceD. KodondiK.K. TshefuA. BoseC. A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia.Public Health Nutr.201518101785179210.1017/S136898001400333425631295
    [Google Scholar]
  124. AhnM.Y. KimB.J. KimH.J. JinJ.M. YoonH.J. HwangJ.S. ParkK.K. Anti-cancer effect of dung beetle glycosaminoglycans on melanoma.BMC Cancer2019191910.1186/s12885‑018‑5202‑z30611221
    [Google Scholar]
  125. WuS. LuM. WangS. Antiageing activities of water-soluble chitosan from Clanis bilineata larvae.Int. J. Biol. Macromol.201710237637910.1016/j.ijbiomac.2017.04.03828412336
    [Google Scholar]
  126. BergmansR.S. NikodemovaM. StullV.J. RappA. MaleckiK.M.C. Comparison of cricket diet with peanut-based and milk-based diets in the recovery from protein malnutrition in mice and the impact on growth, metabolism and immune function.PLoS One2020156e023455910.1371/journal.pone.023455932525953
    [Google Scholar]
  127. HwangJ. HwangU.W. Beneficial effects of fermented cricket powder as a hair growth promoting agent in a mice model.J. Life Sci.20223219620110.5352/JLS.2022.32.3.196
    [Google Scholar]
  128. LeeJ.H. JoY.Y. KimK.Y. KweonH. Effects of silkworm and its by-products on muscle mass and exercise performance in ICR mice.Int. J. Ind. Entomol.201939343810.7852/ijie.2019.39.1.34
    [Google Scholar]
  129. ManteyA.A. LutterodtH.E. TwumasiP. AnnanR.A. Effect of 12 weeks consumption of palm weevil larvae and orange-fleshed sweet potato fortified biscuit on nutritional status and cognitive performance of school children in Kumasi, Ghana.Afr. J. Food Agric. Nutr. Dev.202222113213972141710.18697/ajfand.113.21620
    [Google Scholar]
  130. PessinaF. FrosiniM. MarcolongoP. FusiF. SaponaraS. GamberucciA. ValotiM. GiustariniD. FiorenzaniP. GorelliB. FrancardiV. BottaM. DreassiE. Antihypertensive, cardio- and neuro-protective effects of Tenebrio molitor (Coleoptera: Tenebrionidae) defatted larvae in spontaneously hypertensive rats.PLoS One2020155e023378810.1371/journal.pone.023378832470081
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013288788240405053034
Loading
/content/journals/cnf/10.2174/0115734013288788240405053034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test