Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

With the global elderly population projected to double by 2050, there is an increasing need to address the risk factors associated with neurodegenerative diseases. This article focuses on exploring the potential neuroprotective effects of quercetin mediated through the Nrf2 signaling pathway. Quercetin, a flavonoid pigment known for its antioxidant properties, can directly interact with Keap1, leading to the dissociation of Nrf2 from the Keap1-Nrf2 complex. Consequently, Nrf2 is released and translocates to the nucleus, initiating the transcription of antioxidant enzymes, such as heme oxygenase-1, NAD(P) H: quinone oxidoreductase 1, and glutathione S-transferase. The exploration of quercetin as an Nrf2 activator holds significant therapeutic implications for neurodegenerative disorders. Human studies demonstrate the efficacy of quercetin in neurodegenerative diseases, while animal studies highlight the protective effects of the Nrf2 signaling pathway. Additionally, Nrf2 regulates proinflammatory cytokines. This study aims to investigate the potential neuroprotective effects of quercetin mediated through the Nrf2 signaling pathway. By targeting oxidative stress, neuroinflammation, and improving mitochondrial function, quercetin shows promise as a candidate for preventing or slowing the progression of neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013278925240507044009
2024-05-23
2025-01-30
Loading full text...

Full text loading...

References

  1. RaufA. ImranM. KhanI.A. ur-RehmanM. GilaniS.A. MehmoodZ. MubarakM.S. Anticancer potential of quercetin: A comprehensive review.Phytother. Res.201832112109213010.1002/ptr.615530039547
    [Google Scholar]
  2. BootsA.W. HaenenG.R. BastA. Health effects of quercetin: From antioxidant to nutraceutical.Eur. J. Pharmacol.20085852-332533718417116
    [Google Scholar]
  3. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112330901869
    [Google Scholar]
  4. AlemzadehE. KaramianM. AbediF. Hanafi-BojdM.Y. Topical treatment of cutaneous leishmaniasis lesions using quercetin/ Artemisia-capped silver nanoparticles ointment: Modulation of inflammatory response.Acta Trop.202222810632535093324
    [Google Scholar]
  5. EbrahimzadehA. Topically applied luteolin/quercetin-capped silver nanoparticle ointment as antileishmanial composite: Acceleration wound healing in BALB/c mice.Adv. Mater. Sci. Eng.20232023111
    [Google Scholar]
  6. KohandelZ, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases.Pharmacotherapy20221145112179
    [Google Scholar]
  7. SamarghandianS, Hadjzadeh MA, Afshari JT, Hosseini M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.BMC Comp Alt Med2014141918284912
    [Google Scholar]
  8. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J Cell Physiol 2020; 235(5): 4135-4145. Epub 2019 Oct 21.10.1002/jcp.2932731637721
  9. Samarghandian S, Borji A, Tabasi SH. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc Hematol Disord Drug Targets 2013; 13(3): 231-6.10.2174/1871529x13666131129103139
  10. Ashrafizadeh M, Fekri HS, Ahmadi Z, Farkhondeh T, Samarghandian S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J Cell Biochem 2020; 121(2): 1575-1585.10.1002/jcb.2939231609017
  11. El-HoranyH.E. El-LatifR.N. ElBatshM.M. EmamM.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (quercetin on experimental Parkinson’s disease).J. Biochem. Mol. Toxicol.201630736036927252111
    [Google Scholar]
  12. ElumalaiP. LakshmiS. Role of quercetin benefits in neurodegeneration.Adv Neurobiol.20161222945
    [Google Scholar]
  13. CostaL.G. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more.Oxid Med Cell Longev.20162016298679610.1155/2016/2986796
    [Google Scholar]
  14. Ashrafizadeh M, Zarrabi A, Orouei S. et al. MicroRNA-mediated autophagy regulation in cancer therapy: the role in chemoresistance/chemosensitivity. Eur J Pharmacol 2021; 5(892): 173660
  15. LinsemanD.A. Targeting oxidative stress for neuroprotection.Antioxid. Redox Signal.200911342142410.1089/ars.2008.223618715147
    [Google Scholar]
  16. MoiP. ChanK. AsunisI. CaoA. KanY.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.Proc. Natl. Acad. Sci. USA199491219926993010.1073/pnas.91.21.99267937919
    [Google Scholar]
  17. JohnsonJ.A. JohnsonD.A. KraftA.D. CalkinsM.J. JakelR.J. VargasM.R. ChenP.C. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration.Ann. N. Y. Acad. Sci.200811471616910.1196/annals.1427.03619076431
    [Google Scholar]
  18. LeeJ.M. CalkinsM.J. ChanK. KanY.W. JohnsonJ.A. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis.J. Biol. Chem.200327814120291203810.1074/jbc.M21155820012556532
    [Google Scholar]
  19. ShihA.Y. JohnsonD.A. WongG. KraftA.D. JiangL. ErbH. JohnsonJ.A. MurphyT.H. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress.J. Neurosci.20032383394340610.1523/JNEUROSCI.23‑08‑03394.200312716947
    [Google Scholar]
  20. GanL. JohnsonJ.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases.Biochim. Biophys. Acta Mol. Basis Dis.2014184281208121810.1016/j.bbadis.2013.12.01124382478
    [Google Scholar]
  21. ShihA.Y. ImbeaultS. BarakauskasV. ErbH. JiangL. LiP. MurphyT.H. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo.J. Biol. Chem.200528024229252293610.1074/jbc.M41463520015840590
    [Google Scholar]
  22. LiangL. GaoC. LuoM. WangW. ZhaoC. ZuY. EfferthT. FuY. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway.J. Agric. Food Chem.201361112755276110.1021/jf304768p23419114
    [Google Scholar]
  23. NouhiF. TusiS.K. AbdiA. KhodagholiF. Dietary supplementation with tBHQ, an Nrf2 stabilizer molecule, confers neuroprotection against apoptosis in amyloid β-injected rat.Neurochem. Res.201136587087810.1007/s11064‑011‑0417‑221293924
    [Google Scholar]
  24. ArredondoF. EcheverryC. Abin-CarriquiryJ.A. BlasinaF. AntúnezK. JonesD.P. GoY.M. LiangY.L. DajasF. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult.Free Radic. Biol. Med.201049573874710.1016/j.freeradbiomed.2010.05.02020554019
    [Google Scholar]
  25. Granado-SerranoA.B. MartínM.A. BravoL. GoyaL. RamosS. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38.Chem. Biol. Interact.2012195215416410.1016/j.cbi.2011.12.00522197970
    [Google Scholar]
  26. SawC.L.L. GuoY. YangA.Y. Paredes-GonzalezX. RamirezC. PungD. KongA.N.T. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway.Food Chem. Toxicol.20147230331110.1016/j.fct.2014.07.03825111660
    [Google Scholar]
  27. VickersN.J. Animal communication: When I’m calling you, will you answer too?Curr. Biol.20172714R713R71528743020
    [Google Scholar]
  28. SharmaV.K. SinghT.G. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease.Life Sci.202026211840132926928
    [Google Scholar]
  29. SharmaV.K. MehtaV. SinghT.G. Alzheimer’s disorder: Epigenetic connection and associated risk factors.Curr. Neuropharmacol.202018874075310.2174/1570159X1866620012812564131989902
    [Google Scholar]
  30. SharmaV.K. SinghT.G. Navigating Alzheimer’s disease via chronic stress: The role of glucocorticoids.Curr. Drug Targets202021543344431625472
    [Google Scholar]
  31. KimW.S. KågedalK. HallidayG.M. Alpha-synuclein biology in Lewy body diseases.Alzheimers Res. Ther.2014657325580161
    [Google Scholar]
  32. ThapaK. KhanH. SharmaU. GrewalA.K. SinghT.G. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases.Life Sci.202126711897510.1016/j.lfs.2020.11897533387580
    [Google Scholar]
  33. KanaanN.M. ManfredssonF.P. Loss of functional alpha-synuclein: A toxic event in Parkinson’s disease?J. Parkinsons Dis.20122424926723938255
    [Google Scholar]
  34. De VosK.J. GriersonA.J. AckerleyS. MillerC.C. Role of axonal transport in neurodegenerative diseases.Annu. Rev. Neurosci.20083115117318558852
    [Google Scholar]
  35. PurvesD. Circuits within the basal ganglia system. Neuroscience2nd edSunderland, MassachusettsSinauer Associates2001
    [Google Scholar]
  36. CrossmanA.R. Functional anatomy of movement disorders.J. Anat.2000196Pt 451952510923984
    [Google Scholar]
  37. IritiM. VitaliniS. FicoG. FaoroF. Neuroprotective herbs and foods from different traditional medicines and diets.Molecules20101553517355520657497
    [Google Scholar]
  38. GoldenbergM.M. Medical management of Parkinson’s disease.P&T2008331059060619750042
    [Google Scholar]
  39. Dinkova-KostovaA.T. KostovR.V. KazantsevA.G. The role of Nrf2 signaling in counteracting neurodegenerative diseases.FEBS J.2018285193576359029323772
    [Google Scholar]
  40. EsterasN. Dinkova-KostovaA.T. AbramovA.Y. Nrf2 activation in the treatment of neurodegenerative diseases: A focus on its role in mitochondrial bioenergetics and function.Biol. Chem.2016397538340026812787
    [Google Scholar]
  41. KobayashiE.H. SuzukiT. FunayamaR. NagashimaT. HayashiM. SekineH. TanakaN. MoriguchiT. MotohashiH. NakayamaK. YamamotoM. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.Nat. Commun.2016711162427211851
    [Google Scholar]
  42. LiuR. YangJ. LiY. XieJ. WangJ. Heme oxygenase-1: The roles of both good and evil in neurodegenerative diseases.J. Neurochem.2023167334736137746863
    [Google Scholar]
  43. PaladinoS. ConteA. CaggianoR. PierantoniG.M. FaraonioR. Nrf2 pathway in age-related neurological disorders: Insights into MicroRNAs.Cell. Physiol. Biochem.20184751951197629969760
    [Google Scholar]
  44. LuM.C. JiJ.A. JiangZ.Y. YouQ.D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: An update.Med. Res. Rev.201636592496310.1002/med.2139627192495
    [Google Scholar]
  45. SiZ. WangX. The neuroprotective and neurodegeneration effects of heme oxygenase-1 in Alzheimer’s disease.J. Alzheimers Dis.20207841259127210.3233/JAD‑20072033016915
    [Google Scholar]
  46. JazwaA. CuadradoA. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases.Curr. Drug Targets201011121517153110.2174/138945011100901151720704549
    [Google Scholar]
  47. WuY.H. HsiehH.L. Roles of heme oxygenase-1 in neuroinflammation and brain disorders.Antioxidants202211592310.3390/antiox1105092335624787
    [Google Scholar]
  48. ShenX. HuB. XuG. ChenF. MaR. ZhangN. LiuJ. MaX. ZhuJ. WuY. ShenR. Activation of Nrf2/HO-1 pathway by glycogen synthase kinase-3β inhibition attenuates renal ischemia/reperfusion injury in diabetic rats.Kidney Blood Press. Res.201742236937810.1159/00047794728624830
    [Google Scholar]
  49. NguyenT. NioiP. PickettC.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.J. Biol. Chem.200928420132911329510.1074/jbc.R90001020019182219
    [Google Scholar]
  50. TuW. WangH. LiS. LiuQ. ShaH. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases.Aging Dis.201910363765110.14336/AD.2018.051331165007
    [Google Scholar]
  51. Moratilla-RiveraI. SánchezM. Valdés-GonzálezJ.A. Gómez-SerranillosM.P. Natural products as modulators of Nrf2 signaling pathway in neuroprotection.Int. J. Mol. Sci.2023244374810.3390/ijms2404374836835155
    [Google Scholar]
  52. SinghS. NagalakshmiD. SharmaK.K. RavichandiranV. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review.Heliyon202172e0621610.1016/j.heliyon.2021.e0621633659743
    [Google Scholar]
  53. HuangY. LiW. SuZ. KongA.N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response.J. Nutr. Biochem.201526121401141310.1016/j.jnutbio.2015.08.00126419687
    [Google Scholar]
  54. ZhangN. ShuH.Y. HuangT. ZhangQ.L. LiD. ZhangG.Q. PengX.Y. LiuC.F. LuoW.F. HuL.F. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity.PLoS One201496e10028610.1371/journal.pone.010028624959672
    [Google Scholar]
  55. MattsonM.P. ChengA. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses.Trends Neurosci.2006291163263910.1016/j.tins.2006.09.00117000014
    [Google Scholar]
  56. SoheyliE. AzadD. SahraeiR. HatamniaA.A. RostamzadA. AlinazariM. Synthesis and optimization of emission characteristics of water-dispersible ag-in-s quantum dots and their bactericidal activity.Colloids Surf. B Biointerfaces201918211038910.1016/j.colsurfb.2019.11038931377610
    [Google Scholar]
  57. MorenoL.C.G.I. PuertaE. Suárez-SantiagoJ.E. Santos-MagalhãesN.S. RamirezM.J. IracheJ.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease.Int. J. Pharm.20175171-2505710.1016/j.ijpharm.2016.11.06127915007
    [Google Scholar]
  58. MenK. Nanoparticle-delivered quercetin for cancer therapy.Anticancer Agents Med Chem.20141468263210.2174/1871520614666140521122932
    [Google Scholar]
  59. QiP. LiJ. GaoS. YuanY. SunY. LiuN. LiY. WangG. ChenL. ShiJ. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s disease.Front. Aging Neurosci.20201258958810.3389/fnagi.2020.58958833192484
    [Google Scholar]
  60. LiaoX. GeK. CaiZ. QiuS. WuS. LiQ. LiuZ. GaoF. TangQ. Hybridization chain reaction triggered poly adenine to absorb silver nanoparticles for label-free electrochemical detection of Alzheimer’s disease biomarkers amyloid β-peptide oligomers.Anal. Chim. Acta2022119233939110.1016/j.aca.2021.33939135057926
    [Google Scholar]
  61. SamarghandianS, Azimi-Nezhad M, Borji A, Farkhondeh T. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytotherapy Res20163081345-53
    [Google Scholar]
  62. KahrobaH. RamezaniB. MaadiH. SadeghiM.R. JaberieH. RamezaniF. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease.Ageing Res. Rev.20216510121110.1016/j.arr.2020.10121133186670
    [Google Scholar]
  63. OsamaA. ZhangJ. YaoJ. YaoX. FangJ. Nrf2: A dark horse in Alzheimer’s disease treatment.Ageing Res. Rev.20206410120610.1016/j.arr.2020.10120633144124
    [Google Scholar]
  64. SahaS. ButtariB. ProfumoE. TucciP. SasoL. A perspective on Nrf2 signaling pathway for neuroinflammation: A potential therapeutic target in Alzheimer’s and Parkinson’s diseases.Front. Cell. Neurosci.20221578725810.3389/fncel.2021.78725835126058
    [Google Scholar]
  65. JoshiG. GanK.A. JohnsonD.A. JohnsonJ.A. Increased Alzheimer’s disease–like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy.Neurobiol. Aging201536266467910.1016/j.neurobiolaging.2014.09.00425316599
    [Google Scholar]
  66. BahnG. ParkJ.S. YunU.J. LeeY.J. ChoiY. ParkJ.S. BaekS.H. ChoiB.Y. ChoY.S. KimH.K. HanJ. SulJ.H. BaikS.H. LimJ. WakabayashiN. BaeS.H. HanJ.W. ArumugamT.V. MattsonM.P. JoD.G. NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models.Proc. Natl. Acad. Sci. USA201911625125161252310.1073/pnas.181954111631164420
    [Google Scholar]
  67. Boesch-SaadatmandiC. WolfframS. MinihaneA.M. RimbachG. Effect of apoE genotype and dietary quercetin on blood lipids and TNF-α levels in apoE3 and apoE4 targeted gene replacement mice.Br. J. Nutr.2009101101440144310.1017/S000711450810243418986596
    [Google Scholar]
  68. ZhangX. HuJ. ZhongL. WangN. YangL. LiuC.C. LiH. WangX. ZhouY. ZhangY. XuH. BuG. ZhuangJ. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice.Neuropharmacology201610817919227114256
    [Google Scholar]
  69. EbrahimpourS. ShahidiS.B. AbbasiM. TavakoliZ. EsmaeiliA. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats.Sci. Rep.20201011595710.1038/s41598‑020‑71971‑232994439
    [Google Scholar]
  70. AshrafizadehM, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy.Cells20198101158
    [Google Scholar]
  71. LeeM. McGeerE.G. McGeerP.L. Quercetin, not caffeine, is a major neuroprotective component in coffee.Neurobiol. Aging20164611312310.1016/j.neurobiolaging.2016.06.01527479153
    [Google Scholar]
  72. YuX. LiY. MuX. ffect of Quercetin on PC12 Alzheimer's Disease cell model induced by Aβ25-35 and its mechanism based on Sirtuin1/Nrf2/HO-1 pathway.Biomed Res Int.202020208210578
    [Google Scholar]
  73. ZaplaticE. BuleM. ShahS.Z.A. UddinM.S. NiazK. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease.Life Sci.201922410911930914316
    [Google Scholar]
  74. OlanowC.W. SternM.B. SethiK. The scientific and clinical basis for the treatment of Parkinson disease (2009).Neurology20097221Suppl. 4S1S13619470958
    [Google Scholar]
  75. PanaroM.A. CianciulliA. Current opinions and perspectives on the role of immune system in the pathogenesis of Parkinson’s disease.Curr. Pharm. Des.201218220020822229581
    [Google Scholar]
  76. IghodaroO. AkinloyeO. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.2018544287293
    [Google Scholar]
  77. JiangY. XieG. AlimujiangA. XieH. YangW. YinF. HuangD. Protective effects of Querectin against MPP+-induced dopaminergic neurons injury via the Nrf2 signaling pathway.Front. Biosci.-Landmark20232834237005755
    [Google Scholar]
  78. XiongY. MahmoodA. ChoppM. Animal models of traumatic brain injury.Nat. Rev. Neurosci.201314212814223329160
    [Google Scholar]
  79. CarrollL.J. CassidyJ.D. CancelliereC. CôtéP. HincapiéC.A. KristmanV.L. HolmL.W. BorgJ. Nygren-de BoussardC. HartvigsenJ. Systematic review of the prognosis after mild traumatic brain injury in adults: Cognitive, psychiatric, and mortality outcomes: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis.Arch. Phys. Med. Rehabil.2014953S152S17324581903
    [Google Scholar]
  80. YangT. KongB. GuJ.W. KuangY.Q. ChengL. YangW.T. XiaX. ShuH.F. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury.Cell. Mol. Neurobiol.201434679780410.1007/s10571‑014‑0070‑924846663
    [Google Scholar]
  81. LiX. WangH. GaoY. LiL. TangC. WenG. ZhouY. ZhouM. MaoL. FanY. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway.PLoS One20161110e016423710.1371/journal.pone.016423727780244
    [Google Scholar]
  82. SweeneyM.D. Blood-brain barrier: From physiology to disease and back.Physiol. Rev.2019991217830280653
    [Google Scholar]
  83. LiY. ZhongW. JiangZ. TangX. New progress in the approaches for blood–brain barrier protection in acute ischemic stroke.Brain Res. Bull.2019144465710.1016/j.brainresbull.2018.11.00630448453
    [Google Scholar]
  84. KhoshnamS.E. WinlowW. FarzanehM. FarboodY. MoghaddamH.F. Pathogenic mechanisms following ischemic stroke.Neurol. Sci.20173871167118610.1007/s10072‑017‑2938‑128417216
    [Google Scholar]
  85. LeeS.H. LeeJ.H. LeeH.Y. MinK.J. Sirtuin signaling in cellular senescence and aging.BMB Rep.2019521243410.5483/BMBRep.2019.52.1.29030526767
    [Google Scholar]
  86. ZhangJ.F. ZhangY.L. WuY.C. The role of Sirt1 in ischemic stroke: Pathogenesis and therapeutic strategies.Front. Neurosci.20181283310.3389/fnins.2018.0083330519156
    [Google Scholar]
  87. YangR. ShenY.J. ChenM. ZhaoJ.Y. ChenS.H. ZhangW. SongJ.K. LiL. DuG.H. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats.J. Asian Nat. Prod. Res.202224327828910.1080/10286020.2021.194930234292112
    [Google Scholar]
  88. da CostaJ.P. VitorinoR. SilvaG.M. VogelC. DuarteA.C. Rocha-SantosT. A synopsis on aging—Theories, mechanisms and future prospects.Ageing Res. Rev.2016299011210.1016/j.arr.2016.06.00527353257
    [Google Scholar]
  89. Wyss-CorayT. Ageing, neurodegeneration and brain rejuvenation.Nature2016539762818018610.1038/nature2041127830812
    [Google Scholar]
  90. TönniesE. TrushinaE. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.J. Alzheimers Dis.20175741105112110.3233/JAD‑16108828059794
    [Google Scholar]
  91. SinghS. SinghT.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach.Curr. Neuropharmacol.2020181091893510.2174/1570159X1866620020712094932031074
    [Google Scholar]
  92. LaneD.J.R. MetselaarB. GreenoughM. BushA.I. AytonS.J. Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer’s disease.Essays Biochem.202165792594010.1042/EBC2021001734623415
    [Google Scholar]
  93. GrewalA.K. SinghT.G. SharmaD. SharmaV. SinghM. RahmanM.H. NajdaA. Walasek-JanuszM. KamelM. AlbadraniG.M. AkhtarM.F. SaleemA. Abdel-DaimM.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin.Biomed. Pharmacother.202114011172910.1016/j.biopha.2021.11172934044274
    [Google Scholar]
  94. WangD.M. LiS.Q. WuW.L. ZhuX.Y. WangY. YuanH.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease.Neurochem. Res.20143981533154310.1007/s11064‑014‑1343‑x24893798
    [Google Scholar]
  95. ChenJ.C. HoF.M. ChenC.P. JengK.C.G. HsuH.B. LeeS.T. LinW.W. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia.Eur. J. Pharmacol.20055211-392010.1016/j.ejphar.2005.08.00516171798
    [Google Scholar]
  96. IslamM.S. QuispeC. HossainR. IslamM.T. Al-HarrasiA. Al-RawahiA. MartorellM. MamurovaA. SeilkhanA. AltybaevaN. AbdullayevaB. DoceaA.O. CalinaD. Sharifi-RadJ. Neuropharmacological effects of quercetin: A literature-based review.Front. Pharmacol.20211266503110.3389/fphar.2021.66503134220504
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013278925240507044009
Loading
/content/journals/cnf/10.2174/0115734013278925240507044009
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; inflammation; neurodegenerative diseases; Nrf2; oxidative stress; Quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test