Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Coffee is one of the most popular beverages in the world, with potential health benefits and anti-diabetic qualities. Numerous bioactive substances found in coffee have been studied for their possible therapeutic benefits in controlling blood glucose. Given the ubiquitous use of coffee, this article aims to review the anti-diabetic characteristics of various coffee bioactive compounds such as chlorogenic acids, caffeic acid, quinic acid, ferulic acid, and caffeine. The modulation of glucose homeostasis, improvement of insulin sensitivity, suppression of gluconeogenesis, anti-inflammatory properties, and antioxidant activity are only a few of the several mechanisms of action that have been suggested. These qualities allow coffee polyphenols to potentially have anti- diabetic effects, opening the door to prospective medicinal uses. The molecular mechanisms underpinning the effects of coffee polyphenols on insulin signaling pathways and glucose metabolism have been clarified by investigations. In animal studies, coffee polyphenols have positively affected pancreatic function, insulin resistance, and glucose regulation. Human studies have linked drinking coffee to a lower incidence of type 2 diabetes, better glycaemic management, and increased insulin sensitivity.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013292395240219091340
2023-03-01
2025-01-30
Loading full text...

Full text loading...

References

  1. IDFFacts & figures Brussels, Belgium: The international diabetes federation.2021Available from: https://idf.org/about-diabetes/diabetes-facts-figures/
  2. IsmailL. MaterwalaH. Al KaabiJ. Association of risk factors with type 2 diabetes: A systematic review.Comput. Struct. Biotechnol. J.2021191759178510.1016/j.csbj.2021.03.00333897980
    [Google Scholar]
  3. Farah A, dos Santos FT. The coffee plant and beans: An introduction. In: Preedy VR, Ed. Coffee in Health and Disease Prevention. San Diego: Academic Press 2015; pp. 5-10.10.1016/B978‑0‑12‑409517‑5.00001‑2
  4. NaveedM. HejaziV. AbbasM. KambohA.A. KhanG.J. ShumzaidM. AhmadF. BabazadehD. FangFangX. GhazaniM.F. WenHuaL. XiaoHuiZ. Chlorogenic acid (CGA): A pharmacological review and call for further research.Biomed. Pharmacother.201897677410.1016/j.biopha.2017.10.06429080460
    [Google Scholar]
  5. van der VossenH. BertrandB. CharrierA. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): A review.Euphytica2015204224325610.1007/s10681‑015‑1398‑z
    [Google Scholar]
  6. KnoppS. BytofG. SelmarD. Influence of processing on the content of sugars in green Arabica coffee beans.Eur. Food Res. Technol.2006223219520110.1007/s00217‑005‑0172‑1
    [Google Scholar]
  7. MessinaG. ZannellaC. MondaV. DatoA. LiccardoD. The beneficial effects of coffee in human nutrition.Biol. Med. (Aligarh)2015741510.4172/0974‑8369.1000240
    [Google Scholar]
  8. ButtM.S. SultanM.T. Coffee and its consumption: Benefits and risks.Crit. Rev. Food Sci. Nutr.201151436337310.1080/1040839090358641221432699
    [Google Scholar]
  9. KrólK. GantnerM. TatarakA. HallmannE. The content of polyphenols in coffee beans as roasting, origin and storage effect.Eur. Food Res. Technol.20202461333910.1007/s00217‑019‑03388‑9
    [Google Scholar]
  10. DybkowskaE. SadowskaA. RakowskaR. DębowskaM. ŚwiderskiF. ŚwiąderK. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting.Rocz. Panstw. Zakl. Hig.201768434735329265388
    [Google Scholar]
  11. DraganS. AndricaF. SerbanM.C. TimarR. Polyphenols-rich natural products for treatment of diabetes.Curr. Med. Chem.2014221142210.2174/092986732166614082611542225174925
    [Google Scholar]
  12. CastaldoL. TorielloM. SessaR. IzzoL. LombardiS. NarváezA. RitieniA. GrossoM. Antioxidant and anti-inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion.Nutrients20211312436810.3390/nu1312436834959920
    [Google Scholar]
  13. JinS. ChangC. ZhangL. LiuY. HuangX. ChenZ. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice.PLoS One2015104e012084210.1371/journal.pone.012084225849026
    [Google Scholar]
  14. HuxleyR. LeeC.M. BarziF. TimmermeisterL. CzernichowS. PerkovicV. GrobbeeD.E. BattyD. WoodwardM. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis.Arch. Intern. Med.2009169222053206310.1001/archinternmed.2009.43920008687
    [Google Scholar]
  15. MoreiraM.E.C. PereiraR.G.F.A. DiasD.F. GontijoV.S. VilelaF.C. de MoraesG.O.I. PaivaG.A. dos SantosM.H. Anti-inflammatory effect of aqueous extracts of roasted and green Coffea arabica L. J. Funct. Foods20135146647410.1016/j.jff.2012.12.002
    [Google Scholar]
  16. de PereiraM.G.V. de NetoC.D.P. JúniorM.A.I. do PradoF.G. PagnoncelliM.G.B. KarpS.G. Chemical composition and health properties of coffee and coffee by-products.Advances in Food and Nutrition Research202091659610.1016/bs.afnr.2019.10.002
    [Google Scholar]
  17. DivišP. PořízkaJr KříkalaJ. The effect of coffee beans roasting on its chemical composition.Potr. Slovak J. Food Sci.201913134435010.5219/1062
    [Google Scholar]
  18. SaudS. SalamatullahA.M. Relationship between the chemical composition and the biological functions of coffee.Molecules20212624763410.3390/molecules2624763434946716
    [Google Scholar]
  19. KyC.L. LouarnJ. DussertS. GuyotB. HamonS. NoirotM. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions.Food Chem.200175222323010.1016/S0308‑8146(01)00204‑7
    [Google Scholar]
  20. HerdenL. WeissertR. The impact of coffee and caffeine on multiple sclerosis compared to other neurodegenerative diseases.Front. Nutr.2018513310.3389/fnut.2018.0013330622948
    [Google Scholar]
  21. PostumaR.B. LangA.E. MunhozR.P. CharlandK. PelletierA. MoscovichM. FillaL. ZanattaD. RomenetsR.S. AltmanR. ChuangR. ShahB. Caffeine for treatment of Parkinson disease.Neurology201279765165810.1212/WNL.0b013e318263570d22855866
    [Google Scholar]
  22. AstibiaO.A. FrancoR. PinillaM.E. Health benefits of methylxanthines in neurodegenerative diseases.Mol. Nutr. Food Res.2017616160067028074613
    [Google Scholar]
  23. HedströmA.K. MowryE.M. GianfrancescoM.A. ShaoX. SchaeferC.A. ShenL. OlssonT. BarcellosL.F. AlfredssonL. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies.J. Neurol. Neurosurg. Psychiatry201687545446010.1136/jnnp‑2015‑31217626940586
    [Google Scholar]
  24. HorriganL. KellyJ. ConnorT. Immunomodulatory effects of caffeine: Friend or foe?Pharmacol. Ther.2006111387789210.1016/j.pharmthera.2006.02.00216540173
    [Google Scholar]
  25. ZhouJ. ZhouS. ZengS. Experimental diabetes treated with trigonelline: Effect on β cell and pancreatic oxidative parameters.Fundam. Clin. Pharmacol.201327327928710.1111/j.1472‑8206.2011.01022.x22172053
    [Google Scholar]
  26. FarahA. In: Coffee constituents.CoffeeWiley2012215810.1002/9781119949893.ch2
    [Google Scholar]
  27. LudwigI.A. CliffordM.N. LeanM.E.J. AshiharaH. CrozierA. Coffee: Biochemistry and potential impact on health.Food Funct.2014581695171710.1039/C4FO00042K24671262
    [Google Scholar]
  28. KumarR. SharmaA. IqbalM.S. SrivastavaJ.K. Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property.Curr. Mol. Pharmacol.202013171610.2174/187446721266619071614521031333144
    [Google Scholar]
  29. GonzálezR.A. HernándezF.C.Y. RiosG.O. QuirozS.M.L. AmaroG.R.M. EstradaH.Z.J. DuarteR.P. Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review.Molecules20222711340010.3390/molecules2711340035684338
    [Google Scholar]
  30. SittipodS. SchwartzE. ParavisiniL. PetersonD.G. Identification of flavor modulating compounds that positively impact coffee quality.Food Chem.201930112525010.1016/j.foodchem.2019.12525031377616
    [Google Scholar]
  31. YeagerS.E. BataliM.E. GuinardJ.X. RistenpartW.D. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition.Crit. Rev. Food Sci. Nutr.20236381010103610.1080/10408398.2021.195776734553656
    [Google Scholar]
  32. SkowronJ.M. FrankowskiR. GrześkowiakZ.A. PłatkiewiczJ. Comprehensive analysis of metabolites in brews prepared from naturally and technologically treated coffee beans.Antioxidants20221219510.3390/antiox1201009536670958
    [Google Scholar]
  33. FarahA. DonangeloC.M. Phenolic compounds in coffee.Braz. J. Plant Physiol.2006181233610.1590/S1677‑04202006000100003
    [Google Scholar]
  34. SarghiniF. FasanoE. VivoA.D. TricaricoM.C. Influence of roasting process in six Coffee arabica cultivars: Analysis of volatile components profiles.Chem. Eng. Trans.20197529530010.3303/CET1975050
    [Google Scholar]
  35. GancarzM. DobrzańskiB.Jr TobołaM.U. TaborS. CombrzyńskiM. ĆwikłaD. StrobelW.R. OniszczukA. KaramiH. DarvishiY. ŻytekA. RusinekR. Impact of coffee bean roasting on the content of pyridines determined by analysis of volatile organic compounds.Molecules2022275155910.3390/molecules2705155935268660
    [Google Scholar]
  36. BrattoliM. CisterninoE. DambruosoP. de GennaroG. GiungatoP. MazzoneA. PalmisaniJ. TutinoM. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds.Sensors20131312167591680010.3390/s13121675924316571
    [Google Scholar]
  37. SunL. TianX. GouL. LingX. WangL. FengY. YinX. LiuY. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia–reperfusion injury in rats.Can. J. Physiol. Pharmacol.201391756256910.1139/cjpp‑2012‑030923826680
    [Google Scholar]
  38. YuJ.M. ChuM. ParkH. ParkJ. LeeK.G. Analysis of volatile compounds in coffee prepared by various brewing and roasting methods.Foods2021106134710.3390/foods1006134734200936
    [Google Scholar]
  39. De VivoA. GenoveseA. TricaricoM.C. ApreaA. SacchiR. SarghiniF. Volatile compounds in espresso resulting from a refined selection of particle size of coffee powder.J. Food Compos. Anal.202211410477910.1016/j.jfca.2022.104779
    [Google Scholar]
  40. TajikN. TajikM. MackI. EnckP. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature.Eur. J. Nutr.20175672215224410.1007/s00394‑017‑1379‑128391515
    [Google Scholar]
  41. ChenL. PuY. XuY. HeX. CaoJ. MaY. JiangW. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables.Food Res. Int.202215711120210.1016/j.foodres.2022.11120235761524
    [Google Scholar]
  42. WangX. PengX. LuJ. HuG. QiuM. Ent-kaurane diterpenoids from the cherries of Coffee arabica.Fitoterapia201913271110.1016/j.fitote.2018.08.02330196075
    [Google Scholar]
  43. WangX. PengX.R. LuJ. HuG.L. QiuM.H. New dammarane triterpenoids, caffruones A–D, from the cherries of Coffee arabica.Nat. Prod. Bioprospect.20188641341810.1007/s13659‑018‑0181‑y30128843
    [Google Scholar]
  44. Del TerraL. LonzarichV. AsquiniE. NavariniL. GraziosiG. LiveraniS.F. PallaviciniA. Functional characterization of three Coffee arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma.Phytochemistry20138961410.1016/j.phytochem.2013.01.00523398891
    [Google Scholar]
  45. BondamA.F. da SilveiraD.D. dos SantosP.J. HoffmannJ.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries.Trends Food Sci. Technol.202212317218610.1016/j.tifs.2022.03.013
    [Google Scholar]
  46. PimpleyV. PatilS. SrinivasanK. DesaiN. MurthyP.S. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes.Prep. Biochem. Biotechnol.2020501096997810.1080/10826068.2020.178669932633686
    [Google Scholar]
  47. CaoH. OuJ. ChenL. ZhangY. SzkudelskiT. DelmasD. DagliaM. XiaoJ. Dietary polyphenols and type 2 diabetes: Human study and clinical trial.Crit. Rev. Food Sci. Nutr.201959203371337910.1080/10408398.2018.149290029993262
    [Google Scholar]
  48. SerinaJ.J.C. CastilhoP.C.M.F. Using polyphenols as a relevant therapy to diabetes and its complications, a review.Crit. Rev. Food Sci. Nutr.202262308355838710.1080/10408398.2021.192797734028316
    [Google Scholar]
  49. MomtazS. MaghsoudiS.A. AbdolghaffariA.H. JasemiE. RezazadehS. HassaniS. ZiaeeM. AbdollahiM. BehzadS. NabaviS.M. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery.Crit. Rev. Clin. Lab. Sci.201956747249210.1080/10408363.2019.164837631418340
    [Google Scholar]
  50. OsamaH. AbdelrahmanM.A. MadneyY.M. HarbH.S. SaeedH. AbdelrahimM.E.A. Coffee and type 2 diabetes risk: Is the association mediated by adiponectin, leptin, c-reactive protein or Interleukin-6? A systematic review and meta-analysis.Int. J. Clin. Pract.2021756e1398310.1111/ijcp.1398333400346
    [Google Scholar]
  51. MeyerF.N.J. LogomarsinoJ.V. Impact of coffee components on inflammatory markers: A review.J. Funct. Foods20124481983010.1016/j.jff.2012.05.010
    [Google Scholar]
  52. AvilaD.J. GarcíaR.J. AguilarG.G. de la RosaL. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling.Molecules201722690310.3390/molecules2206090328556815
    [Google Scholar]
  53. MartiniD. Del Bo’C. TassottiM. RisoP. Del RioD. BrighentiF. PorriniM. Coffee consumption and oxidative stress: A review of human intervention studies.Molecules201621897910.3390/molecules2108097927483219
    [Google Scholar]
  54. ChengK. DongW. LongY. ZhaoJ. HuR. ZhangY. ZhuK. Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans.Food Sci. Nutr.2019731084109510.1002/fsn3.94830918651
    [Google Scholar]
  55. VitaleM. VaccaroO. MasulliM. BonoraE. PratoD.S. GiordaC.B. NicolucciA. SquatritoS. AucielloS. BabiniA.C. BaniL. BuzzettiR. CannarsaE. CignarelliM. CigoliniM. ClementeG. CocozzaS. CorsiL. D’AngeloF. Dall’AglioE. Di CianniG. FontanaL. GregoriG. GrioniS. GiordanoC. IannarelliR. IovineC. LapollaA. LauroD. LaviolaL. MazzucchelliC. SignoriniS. TonuttiL. TrevisanR. ZamboniC. RiccardiG. RivelleseA.A. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study.Clin. Nutr.20173661686169210.1016/j.clnu.2016.11.00227890487
    [Google Scholar]
  56. van DamR.M. HuF.B. Coffee consumption and risk of type 2 diabetes: A systematic review.JAMA200529419710410.1001/jama.294.1.9715998896
    [Google Scholar]
  57. StromsnesK. LagzdinaR. GonzalezO.G. MallenchG.L. GambiniJ. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in in vitro studies, animal models, and humans.Biomedicines202198107410.3390/biomedicines908107434440278
    [Google Scholar]
  58. KusumahJ. de MejiaG.E. Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review.Food Chem. Toxicol.202216111282110.1016/j.fct.2022.11282135032569
    [Google Scholar]
  59. LIczbińskiP. BukowskaB. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations.Ind. Crops Prod.202217511426510.1016/j.indcrop.2021.11426534815622
    [Google Scholar]
  60. WierzejskaR. JaroszM. WojdaB. Caffeine intake during pregnancy and neonatal anthropometric parameters.Nutrients201911480610.3390/nu1104080630970673
    [Google Scholar]
  61. SentkowskaA. PyrzyńskaK. Evaluation of the antioxidant interactions between green tea polyphenols and nonsteroidal anti-inflammatory drugs.Open Chem. J.201961475110.2174/1874842201906010047
    [Google Scholar]
  62. YanY. ZhouX. GuoK. ZhouF. YangH. Use of chlorogenic acid against diabetes mellitus and its complications.J. Immunol. Res.202020201610.1155/2020/968050832566690
    [Google Scholar]
  63. NiJ. WangP. ZhengT. LvL. PengH. Consumption of coffee and risk of gestational diabetes mellitus: A systematic review and meta-analysis of observational studies.Front. Nutr.2021873935910.3389/fnut.2021.73935934616766
    [Google Scholar]
  64. AbaloR. Coffee and caffeine consumption for human health.Nutrients2021139291810.3390/nu1309291834578795
    [Google Scholar]
  65. OhishiT. FukutomiR. ShojiY. GotoS. IsemuraM. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity.Molecules202126245310.3390/molecules2602045333467101
    [Google Scholar]
  66. GaeiniZ. BahadoranZ. MirmiranP. AziziF. Tea, coffee, caffeine intake and the risk of cardio-metabolic outcomes: findings from a population with low coffee and high tea consumption.Nutr. Metab.20191612810.1186/s12986‑019‑0355‑631073321
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013292395240219091340
Loading
/content/journals/cnf/10.2174/0115734013292395240219091340
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidant; Coffee; diabetes; glycemia, bioactive substances; polyphenols
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test