Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Mayonnaise is one of the most popular seasonings and well-established sauces globally, which is considered a high-fat and high-calorie product due to its high oil content. However, excessive consumption of fat (especially saturated fatty acids) leads to an increased risk of various chronic diseases including cardiovascular disease, coronary artery disease, type 2 diabetes, COVID-19, and obesity. Therefore, the demand for low-fat, low-calorie food products is increasing. Fat replacers (FR) have recently been employed to decrease fat content while ensuring consumer acceptability. Production of low-fat mayonnaise without significant quality changes is challenging from an industrial point of view. In this review, the fat replacement approach in the low/or reduced-fat mayonnaise and salad dressing systems is conferred in various aspects, including functional, technological, and sensorial properties. The type and source of used FRs, their benefits and drawbacks, and their nutritional effects are also discussed. Due to the unique functional role of fat, the development of low-fat dressing products that meet consumer demands is more complex than those provided by FRs. Also, although fat and calories are effectively reduced, due to the lack of human intervention studies, future research should focus on the safety of these fat substitutes.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013306923240607074032
2024-06-27
2024-12-28
Loading full text...

Full text loading...

References

  1. SandersT.A.B. Introduction: The role of fats in human diet.Functional dietary lipids. SandersT.A.B. Woodhead Publishing201612010.1016/B978‑1‑78242‑247‑1.00001‑6
    [Google Scholar]
  2. LodishH. BerkA. BretscherA. KaiserC.A. KriegerM. PloeghH. Molecular cell biology and launchpad for molecular cell biology (1-Term Access).W. H. Freeman2016
    [Google Scholar]
  3. Guisado-VascoP Valderas-OrtegaS Carralón-González MM, et al. Clinical characteristics and outcomes among hospitalized adults with severe COVID-19 admitted to a tertiary medical center and receiving antiviral, antimalarials, glucocorticoids, or immunomodulation with tocilizumab or cyclosporine: A retrospective observational study (COQUIMA cohort).EClinic Med20202810059110.1016/j.eclinm.2020.100591 33078138
    [Google Scholar]
  4. NorouzbeigiS. YektaR. Vahid-DastjerdiL. Stability of SARS‐CoV‐2 as consequence of heating and microwave processing in meat products and bread.Food Sci. Nutr.2021995146515210.1002/fsn3.2481 34518780
    [Google Scholar]
  5. ChenY. SheY. ZhangR. WangJ. ZhangX. GouX. Use of starch‐based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases.Food Sci. Nutr.202081162210.1002/fsn3.1303 31993128
    [Google Scholar]
  6. SchwabU. ReynoldsA.N. SallinenT. RivelleseA.A. RisérusU. Dietary fat intakes and cardiovascular disease risk in adults with type 2 diabetes: a systematic review and meta-analysis.Eur. J. Nutr.20216063355336310.1007/s00394‑021‑02507‑1 33611616
    [Google Scholar]
  7. GuoJ. CuiL. MengZ. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review.Food Hydrocoll.202313710831310.1016/j.foodhyd.2022.108313
    [Google Scholar]
  8. SubrotoE. IndiartoR. DjaliM. RosyidaH.D. Production and application of crosslinking-modified starch as fat replacer: A review.Int J Engin Trends Technol20206812263010.14445/22315381/IJETT‑V68I12P205
    [Google Scholar]
  9. MeyerN.M.T. PohrtA. WernickeC. Improvement in visceral adipose tissue and ldl cholesterol by high pufa intake: 1-year results of the nutriact trial.Nutrients2024167105710.3390/nu16071057 38613089
    [Google Scholar]
  10. YazarG. RosellC.M. Fat replacers in baked products: their impact on rheological properties and final product quality.Crit. Rev. Food Sci. Nutr.202363257653767610.1080/10408398.2022.2048353 35285734
    [Google Scholar]
  11. BourouisI. PangZ. LiuX. Recent advances on uses of protein and/or polysaccharide as fat replacers: Textural and tribological perspectives: A review.J Agricult Food Res20231110051910.1016/j.jafr.2023.100519
    [Google Scholar]
  12. Asyrul-IzharA.B. BakarJ. SaziliA.Q. MengG.Y. Ismail-FitryM.R. Incorporation of different physical forms of fat replacers in the production of low-fat/reduced-fat meat products: Which is more practical?Food Rev. Int.20233996387641910.1080/87559129.2022.2108439
    [Google Scholar]
  13. ZhaoY. KhalesiH. HeJ. FangY. Application of different hydrocolloids as fat replacer in low-fat dairy products: Ice cream, yogurt and cheese.Food Hydrocoll.202313810849310.1016/j.foodhyd.2023.108493
    [Google Scholar]
  14. SyanV. KaurJ. SharmaK. An overview on the types, applications and health implications of fat replacers.J. Food Sci. Technol.2024611273810.1007/s13197‑022‑05642‑7 38192702
    [Google Scholar]
  15. ZeeceM. Chapter Seven - Food additives. Introduction to the Chemistry of Food.Academic Press202025131110.1016/B978‑0‑12‑809434‑1.00007‑4
    [Google Scholar]
  16. O’SullivanM.G. Nutritionally Optimised Low Fat Foods. A Handbook for Sensory and Consumer-Driven New Product Development.Woodhead Publishing201717719610.1016/B978‑0‑08‑100352‑7.00009‑9
    [Google Scholar]
  17. Mirzanajafi-ZanjaniM. YousefiM. EhsaniA. Challenges and approaches for production of a healthy and functional mayonnaise sauce.Food Sci. Nutr.2019782471248410.1002/fsn3.1132 31428335
    [Google Scholar]
  18. ZaliA. GholamzadehS. MohammadiG. Baseline characteristics and associated factors of mortality in COVID-19 patients; an analysis of 16000 cases in Tehran, Iran.Arch. Acad. Emerg. Med.202081e70 33134966
    [Google Scholar]
  19. RosenE.D. SpiegelmanB.M. What we talk about when we talk about fat.Cell20141561-2204410.1016/j.cell.2013.12.012 24439368
    [Google Scholar]
  20. NelsonD.L. CoxM. Lehninger Principles of Biochemistry.Macmillan Learning2021
    [Google Scholar]
  21. RiosR.V. Pessanha MDF, Almeida PFd, Viana CL, Lannes SCdS. Application of fats in some food products.Food Sci Technol20142014315
    [Google Scholar]
  22. SacksF.M. LichtensteinA.H. WuJ.H.Y. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association.Circulation20171363e1e2310.1161/CIR.0000000000000510 28620111
    [Google Scholar]
  23. VogtschmidtYD Soedamah-MuthuSS ImamuraF GivensDI LovegroveJA Replacement of saturated fatty acids from meat by dairy sources in relation to incident cardiovascular disease: The European Prospective Investigation into Cancer and Nutrition (EPIC)- Norfolk study. Am J Clin Nutr20242024S00029165(24)00397- 6.10.1016/j.ajcnut.2024.04.007 38608753
    [Google Scholar]
  24. MaZ. BoyeJ.I. Advances in the design and production of reduced-fat and reduced-cholesterol salad dressing and mayonnaise: a review.Food Bioprocess Technol.20136364867010.1007/s11947‑012‑1000‑9
    [Google Scholar]
  25. Ghorbani GorjiS. SmythH.E. SharmaM. FitzgeraldM. Lipid oxidation in mayonnaise and the role of natural antioxidants: A review.Trends Food Sci. Technol.2016568810210.1016/j.tifs.2016.08.002
    [Google Scholar]
  26. DepreeJ.A. SavageG.P. Physical and flavour stability of mayonnaise.Trends Food Sci. Technol.2001125-615716310.1016/S0924‑2244(01)00079‑6
    [Google Scholar]
  27. AskariM. MostaghimT. Evaluation of using salep and chitosan hydrocolloid as stabilizers and fat replacer in physicochemical and rheological features of low-fat mayonnaise.J Food Biosci Technol2019926372
    [Google Scholar]
  28. GuilmineauF. KulozikU. Influence of a thermal treatment on the functionality of hen’s egg yolk in mayonnaise.J. Food Eng.200778264865410.1016/j.jfoodeng.2005.11.002
    [Google Scholar]
  29. TarimalaS. DaiL.L. Structure of microparticles in solid-stabilized emulsions.Langmuir20042093492349410.1021/la036129e 15875369
    [Google Scholar]
  30. DrozłowskaE. ŁopusiewiczŁ. MężyńskaM. BartkowiakA. The effect of native and denaturated flaxseed meal extract on physiochemical properties of low fat mayonnaises.J. Food Meas. Charact.20201421135114510.1007/s11694‑019‑00363‑6
    [Google Scholar]
  31. DickinsonE. Stabilising emulsion‐based colloidal structures with mixed food ingredients.J. Sci. Food Agric.201393471072110.1002/jsfa.6013 23280883
    [Google Scholar]
  32. ZhangH. ZhangF. YuanR. Applications of natural polymer-based hydrogels in the food industry Hydrogels based on natural polymers.Elsevier202035741010.1016/B978‑0‑12‑816421‑1.00015‑X
    [Google Scholar]
  33. SuH.P. LienC.P. LeeT.A. HoJ.H. Development of low‐fat mayonnaise containing polysaccharide gums as functional ingredients.J. Sci. Food Agric.201090580681210.1002/jsfa.3888 20355116
    [Google Scholar]
  34. YashiniM. SunilC. SahanaS. HemanthS. ChidanandD. RawsonA. Protein-based fat replacers – A review of recent advances.Food Rev. Int.2021372197223
    [Google Scholar]
  35. SumonsiriN. PanjunB. NaksukS. BoonmawatS. MukprasirtA. PhasuthanP. Effect of oatmeal as a fat replacer on physical properties and sensory acceptance of creamy salad dressing. E3S Web Conf2020141510.1051/e3sconf/202014102006
    [Google Scholar]
  36. ParkJ.J. OlawuyiI.F. LeeW.Y. Characteristics of low-fat mayonnaise using different modified arrowroot starches as fat replacer.Int. J. Biol. Macromol.202015321522310.1016/j.ijbiomac.2020.02.331 32135256
    [Google Scholar]
  37. YashiniM. SahanaS. HemanthS.D. SunilC.K. Partially defatted tomato seed flour as a fat replacer: effect on physicochemical and sensory characteristics of millet-based cookies.J. Food Sci. Technol.202158124530454110.1007/s13197‑020‑04936‑y 34629517
    [Google Scholar]
  38. OgneanC.F. DarieN. OgneanM. Fat replacers.J Agroaliment Processes and Technol2006122433442[review]
    [Google Scholar]
  39. OmaymaE. YoussefM. Fat replacers and their applications in food products: A review.J. Food Sci. Technol.2007412944
    [Google Scholar]
  40. Romلn L Román L, Martínez MM, Gómez M. Assessing of the potential of extruded flour paste as fat replacer in O/W emulsion: A rheological and microstructural study.Food Res. Int.201574727910.1016/j.foodres.2015.04.035 28412005
    [Google Scholar]
  41. Agyei-AmponsahJ. MacakovaL. DeKockH.L. EmmambuxM.N. Effect of substituting sunflower oil with starch‐based fat replacers on sensory profile, tribology, and rheology of reduced‐fat mayonnaise‐type emulsions.Stärke2021733-4200009210.1002/star.202000092
    [Google Scholar]
  42. PaglariniC.S. VidalV.A.S. MartiniS. CunhaR.L. PollonioM.A.R. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review.Crit. Rev. Food Sci. Nutr.202262364065510.1080/10408398.2020.1825322 33000627
    [Google Scholar]
  43. HosseiniS.A. AzarikiaM. BorhaniB. GholamiR. Maltodextrin as fat replacer in food products.Alborz Univer Med2021102713
    [Google Scholar]
  44. AkoğluA. CakirI. KarahanA.G. CakmakciM.L. Effects of bacterial cellulose as a fat replacer on some properties of fat-reduced mayonnaise.Rom. Biotechnol. Lett.20182331367413680
    [Google Scholar]
  45. ManeeratN. TangsuphoomN. NitithamyongA. Effect of extraction condition on properties of pectin from banana peels and its function as fat replacer in salad cream.J. Food Sci. Technol.201754238639710.1007/s13197‑016‑2475‑6 28242938
    [Google Scholar]
  46. MarinescuG. StoicescuA. PatrascuL. The preparation of mayonnaise containing spent brewer’s yeast β-glucan as a fat replacer.Rom. Biotechnol. Lett.201116260176025
    [Google Scholar]
  47. AtaieM.J. ShekarabiS.P.H. JaliliS.H. Gelatin from bones of bighead carp as a fat replacer on physicochemical and sensory properties of low-fat mayonnaise.J. Microbiol. Biotechnol. Food Sci.20212021979983
    [Google Scholar]
  48. MengR. WuZ. XieQ.T. Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: Effect of interfacial composition on lipid oxidation and in vitro digestion.Food Hydrocoll.202010810602010.1016/j.foodhyd.2020.106020
    [Google Scholar]
  49. ZhangT. GuoJ. ChenJ.F. WangJ.M. WanZ.L. YangX.Q. Heat stability and rheological properties of concentrated soy protein/egg white protein composite microparticle dispersions.Food Hydrocoll.202010010544910.1016/j.foodhyd.2019.105449
    [Google Scholar]
  50. GaoY. ZhaoY. YaoY. Recent trends in design of healthier fat replacers: Type, replacement mechanism, sensory evaluation method and consumer acceptance.Food Chem.202444713898210.1016/j.foodchem.2024.138982 38489876
    [Google Scholar]
  51. WangY. ZhengH. LiY. LiB. ChenY. One step procedure for desalting salty egg white and preparing fat analogue and its application in mayonnaise.Food Hydrocoll.20154531732610.1016/j.foodhyd.2014.11.007
    [Google Scholar]
  52. Guler-AkinM.B. AvkanF. AkinM.S. A novel functional reduced fat ice cream produced with pea protein isolate instead of milk powder.J. Food Process. Preserv.20214511e1590110.1111/jfpp.15901
    [Google Scholar]
  53. TangerC. SchmidtF. UtzF. KreisslJ. DawidC. KulozikU. Pea protein microparticulation using extrusion cooking: Influence of extrusion parameters and drying on microparticle characteristics and sensory by application in a model milk dessert.Innov. Food Sci. Emerg. Technol.20217410285110.1016/j.ifset.2021.102851
    [Google Scholar]
  54. ChenD. CampanellaO.H. Limited enzymatic hydrolysis induced pea protein gelation at low protein concentration with less heat requirement.Food Hydrocoll.202212810754710.1016/j.foodhyd.2022.107547
    [Google Scholar]
  55. AkbariM. EskandariM.H. DavoudiZ. Application and functions of fat replacers in low-fat ice cream: A review.Trends Food Sci. Technol.201986344010.1016/j.tifs.2019.02.036
    [Google Scholar]
  56. HeikalY.A.R. HassanA.A. Abou-ArabA.A. Abu-SalemF.M. AzabD.E.S.H. Nano formulated soy proteins as a fat replacer in low fat mayonnaise formula.J. Saudi Soc. Agric. Sci.202322746947910.1016/j.jssas.2023.04.006
    [Google Scholar]
  57. KumarS.S. BalasubramanianS. BiswasA.K. ChatliM.K. DevatkalS.K. SahooJ. Efficacy of soy protein isolate as a fat replacer on physico-chemical and sensory characteristics of low-fat paneer.J. Food Sci. Technol.201148449850110.1007/s13197‑010‑0193‑z 23572778
    [Google Scholar]
  58. NourmohammadiN. AustinL. ChenD. Protein-based fat replacers: a focus on fabrication methods and fat-mimic mechanisms.Foods202312595710.3390/foods12050957 36900473
    [Google Scholar]
  59. LiuK. TianY. StiegerM. van der LindenE. van de VeldeF. Evidence for ball-bearing mechanism of microparticulated whey protein as fat replacer in liquid and semi-solid multi-component model foods.Food Hydrocoll.20165240341410.1016/j.foodhyd.2015.07.016
    [Google Scholar]
  60. SunC. LiuR. LiangB. WuT. SuiW. ZhangM. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise.Food Res. Int.201810815116010.1016/j.foodres.2018.01.036 29735044
    [Google Scholar]
  61. KewB. HolmesM. StiegerM. SarkarA. Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective.Trends Food Sci. Technol.202010645746810.1016/j.tifs.2020.10.032 33380775
    [Google Scholar]
  62. IsusiG.I. MarburgerJ. LohnerN. van der SchaafU.S. Texturing of soy yoghurt alternatives: pectin microgel particles serve as inactive fillers and weaken the soy protein gel structure.Gels20239647310.3390/gels9060473 37367143
    [Google Scholar]
  63. TekinZ.H. KarasuS. Cold‐pressed flaxseed oil by‐product as a new source of fat replacers in low‐fat salad dressing formulation: Steady, dynamic and 3‐ITT rheological properties.J. Food Process. Preserv.2020449e1465010.1111/jfpp.14650
    [Google Scholar]
  64. Tekin-CakmakZ.H. KarasuS. Kayacan-CakmakogluS. AkmanP.K. Investigation of potential use of by‐products from cold‐press industry as natural fat replacers and functional ingredients in a low‐fat salad dressing.J. Food Process. Preserv.2021458e1538810.1111/jfpp.15388
    [Google Scholar]
  65. RoshandelZ. ZibaeiR. AbdolmalekiK. Characteristics of reduced‐fat mayonnaise prepared by oleaster as a fat replacer and natural antioxidant.Food Sci. Nutr.20231163329333810.1002/fsn3.3318 37324861
    [Google Scholar]
  66. JoharyN. FahimdaneshM. GaravandF. Effect of basil seed gum and tracaganth gum as fat replacers on physicochemical, antioxidant and sensory properties of low fat mayonnaise.Int. J. Eng. Sci. Invent.201545157
    [Google Scholar]
  67. MozafariH. HojjatoleslamyM. HosseiniE. Zodo gum exudates from Rosaceae as a fat replacer in reduced-fat salad dressing.Int. Food Res. J.201926310871093
    [Google Scholar]
  68. FernandesS.S. MelladoM.M.S. Development of mayonnaise with substitution of oil or egg yolk by the addition of chia (Salvia hispanica L.) mucilage.J. Food Sci.2018831748310.1111/1750‑3841.13984 29165817
    [Google Scholar]
  69. RibesS. Peña N, Fuentes A, Talens P, Barat JM. Chia (Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: Effect on their nutritional, technological, and sensory properties.J. Dairy Sci.202110432822283310.3168/jds.2020‑19240 33358816
    [Google Scholar]
  70. ChiangJ.H. OngD.S.M. NgF.S.K. HuaX.Y. TayW.L.W. HenryC.J. Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods.Trends Food Sci. Technol.202111510511610.1016/j.tifs.2021.06.039
    [Google Scholar]
  71. NidhalHA EvanuariniH ThohariI Characteristics of reduced fat mayonnaise using pumpkin flour (Cucurbita moschata) as fat replacer E3S Web Conf 20223357
    [Google Scholar]
  72. Martínez E, Pardo JE, Rabadán A, Álvarez-Ortí M. Effects of animal fat replacement by emulsified melon and pumpkin seed oils in deer burgers.Foods2023126127910.3390/foods12061279 36981205
    [Google Scholar]
  73. Öztürk T, Turhan S. Physicochemical properties of pumpkin (Cucurbita pepo L.) seed kernel flour and its utilization in beef meatballs as a fat replacer and functional ingredient.J. Food Process. Preserv.2020449e1469510.1111/jfpp.14695
    [Google Scholar]
  74. ZhangR. BelwalT. LiL. LinX. XuY. LuoZ. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review.Carbohydr. Polym.202024211638810.1016/j.carbpol.2020.116388 32564856
    [Google Scholar]
  75. Al-AubadiI.M.K. Preparation of healthy mayonnaise by using plant and animal gums as oil replacer.Syst Rev Pharm202112111421150
    [Google Scholar]
  76. ElsebaieE.M. MousaM.M. AbulmeatyS.A. Application of gurma melon (Citrullus lantus var. colocynthoides) pulp-based gel fat replacer in mayonnaise.Foods20221118273110.3390/foods11182731 36140859
    [Google Scholar]
  77. CarcelliA. CrisafulliG. CariniE. VittadiniE. Can a physically modified corn flour be used as fat replacer in a mayonnaise?Eur. Food Res. Technol.2020246122493250310.1007/s00217‑020‑03592‑y
    [Google Scholar]
  78. AkcicekA. KarasuS. Utilization of cold pressed chia seed oil waste in a low‐fat salad dressing as natural fat replacer.J. Food Process Eng.2018415e1269410.1111/jfpe.12694
    [Google Scholar]
  79. KadianD. KumarA. BadgujarP.C. SehrawatR. Effect of homogenization and microfluidization on physicochemical and rheological properties of mayonnaise.J. Food Process Eng.2021444e1366110.1111/jfpe.13661
    [Google Scholar]
  80. PazhvandR. KhavarpourM. Rheological, physical and sensory properties of mayonnaise formulated with sesame oil.J Food Biosci Technol2019913544
    [Google Scholar]
  81. Schädle CN, Bader-Mittermaier S, Sanahuja S. Characterization of reduced-fat mayonnaise and comparison of sensory perception, rheological, tribological, and textural analyses.Foods202211680610.3390/foods11060806 35327229
    [Google Scholar]
  82. AnsariL. AliT.M. HasnainA. Effect of chemical modifications on morphological and functional characteristics of water‐chestnut starches and their utilization as a fat‐replacer in low‐fat mayonnaise.Stärke2017691-2160004110.1002/star.201600041
    [Google Scholar]
  83. WerlangS. BonfanteC. OroT. BiduskiB. BertolinT.E. GutkoskiL.C. Native and annealed oat starches as a fat replacer in mayonnaise.J. Food Process. Preserv.2021453e1521110.1111/jfpp.15211
    [Google Scholar]
  84. HeydariA. RazaviS.M.A. Evaluating high pressure-treated corn and waxy corn starches as novel fat replacers in model low-fat O/W emulsions: A physical and rheological study.Int. J. Biol. Macromol.202118439340410.1016/j.ijbiomac.2021.06.052 34144064
    [Google Scholar]
  85. WeissT.J. Food oils and their uses.Ellis Horwood Ltd.1983
    [Google Scholar]
  86. PuligundlaP. ChoY. LeeY. Physicochemical and sensory properties of reduced-fat mayonnaise formulations prepared with rice starch and starch-gum mixtures.Emir. J. Food Agric.201527646346810.9755/ejfa.2015.04.081
    [Google Scholar]
  87. BajajR. SinghN. KaurA. Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise.Int. J. Biol. Macromol.201913114715710.1016/j.ijbiomac.2019.03.054 30857961
    [Google Scholar]
  88. HijaziT. KarasuS. Tekin-ÇakmakZ.H. BozkurtF. Extraction of natural gum from cold-pressed chia seed, flaxseed, and rocket seed oil by-product and application in low fat vegan mayonnaise.Foods202211336310.3390/foods11030363 35159516
    [Google Scholar]
  89. León O, Soto D, López D, Muñoz-Bonilla A, Fernández-García M. Fat‐replacer properties of oxidized cassava starch using hydrogen peroxide/sodium bicarbonate redox system in mayonnaise formulation and its stability.Stärke2019719-10190011210.1002/star.201900112
    [Google Scholar]
  90. GrossklausR. Fat replacers—requirements from a nutritional physiological point of view. Lipid/Fett199698413641
    [Google Scholar]
  91. ReplacersF. The Gale Encyclopedia of Diets: A Guide to Health and NutritionAvailable from: https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/fat-replacers
  92. SmittleR.B. Microbiological safety of mayonnaise, salad dressings, and sauces produced in the United States: a review.J. Food Prot.20006381144115310.4315/0362‑028X‑63.8.1144 10945595
    [Google Scholar]
  93. SubrotoE. Monoacylglycerols and diacylglycerols for fat-based food products: A review.Food Res.20204493294310.26656/fr.2017.4(4).398
    [Google Scholar]
  94. SandrouD.K. ArvanitoyannisI.S. Low-fat/calorie foods: current state and perspectives.Crit. Rev. Food Sci. Nutr.200040542744710.1080/10408690091189211 11029012
    [Google Scholar]
  95. HorvatA. GranatoG. FoglianoV. LuningP.A. Understanding consumer data use in new product development and the product life cycle in European food firms – An empirical study.Food Qual. Prefer.201976203210.1016/j.foodqual.2019.03.008
    [Google Scholar]
  96. JavidiF. RazaviS.M.A. AminiA. Cornstarch nanocrystals as a potential fat replacer in reduced fat O/W emulsions: A rheological and physical study.Food Hydrocoll.20199017218110.1016/j.foodhyd.2018.12.003
    [Google Scholar]
  97. YalmanciD. DertliE. Tekin-CakmakZ.H. KarasuS. The stabilisation of low‐fat mayonnaise by whey protein isolate‐microbial exopolysaccharides (Weissella confusa W‐16 strain) complex.Int. J. Food Sci. Technol.20235831307131610.1111/ijfs.16287
    [Google Scholar]
  98. LeeC.H. ChinK.B. Development of low‐fat sausages using basil seed gum (Ocimum bacilicum L.) and gelatin as a fat replacer.Int. J. Food Sci. Technol.201752373374010.1111/ijfs.13328
    [Google Scholar]
  99. Tekin-CakmakZ.H. AtikI. KarasuS. The potential use of cold-pressed pumpkin seed oil by-products in a low-fat salad dressing: the effect on rheological, microstructural, recoverable properties, and emulsion and oxidative stability.Foods20211011275910.3390/foods10112759 34829043
    [Google Scholar]
  100. CanutoJ.M.P. BatistaR.A. MezaS.L.R. SinneckerJ.P. BonsantoF.P. YoshidaC.M.P. Effects of adding inulin and chia mucilage in the production of mayonnaise with reduced fat and cholesterol: technological, nutritional, and sensory aspects.ObserEcon Latin2024222e324610.55905/oelv22n2‑101
    [Google Scholar]
  101. WangW. HuC. SunH. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation.Lebensm. Wiss. Technol.202216711386710.1016/j.lwt.2022.113867
    [Google Scholar]
  102. MohammadiS. AlimiM. ShahidiS.A. ShokoohiS. Investigating the physicochemical, rheological, and sensory properties of low‐fat mayonnaise prepared with amaranth protein as an egg yolk replacer.Food Sci. Nutr.20241275147516110.1002/fsn3.4163
    [Google Scholar]
  103. Rojas-MartinL. QuintanaS.E. García-Zapateiro LA. Physicochemical, rheological, and microstructural properties of low-fat mayonnaise manufactured with hydrocolloids from Dioscorea rotundata as a fat substitute.Processes202311249210.3390/pr11020492
    [Google Scholar]
  104. DanY. BaekY. JeongE.W. LeeH.G. Development of a novel fat reduction system with quercetin-loaded annealed wheat starch for enhanced emulsifying and oxidative stability in low-fat mayonnaise.J. Food Eng.202436411181210.1016/j.jfoodeng.2023.111812
    [Google Scholar]
  105. LeeZ.J. TongS.C. TangT.K. LeeY.Y. Palm‐based cellulose nanofiber isolated from mechano‐chemical processing as sustainable rheological modifier in reduced fat mayonnaise.J. Food Sci.20228783542356110.1111/1750‑3841.16250 35833588
    [Google Scholar]
  106. OzcanI. OzyigitE. ErkocS. TavmanS. KumcuogluS. Investigating the physical and quality characteristics and rheology of mayonnaise containing aquafaba as an egg substitute.J. Food Eng.202334411138810.1016/j.jfoodeng.2022.111388
    [Google Scholar]
  107. SachkoA. SemaO. GrinchenkoO. GubskyS. Canned beans aquafaba as an egg white substitute in the technology of low-fat mayonnaise.Eng Proc2023561206
    [Google Scholar]
  108. YalmanciD. DertliE. Tekin-CakmakZ.H. KarasuS. Utilization of exopolysaccharide produced by Leuconostoc lactis GW-6 as an emulsifier for low-fat mayonnaise production.Int. J. Biol. Macromol.202322677277910.1016/j.ijbiomac.2022.12.069 36521704
    [Google Scholar]
  109. AliM.R. EL Said RM. Assessment of the potential of Arabic gum as an antimicrobial and antioxidant agent in developing vegan “egg‐free” mayonnaise.J. Food Saf.2020402e1277110.1111/jfs.12771
    [Google Scholar]
  110. LiuR. TianZ. SongY. WuT. SuiW. ZhangM. Optimization of the production of microparticulated egg white proteins as fat mimetic in salad dressings using uniform design.Food Sci. Technol. Res.201824581782710.3136/fstr.24.817
    [Google Scholar]
  111. AvciE. AkcicekA. Tekin CakmakZ.H. KasapogluM.Z. SagdicO. KarasuS. Isolation of protein and fiber from hot pepper seed oil byproduct to enhance rheology, emulsion, and oxidative stability of low-fat salad dressing.ACS Omega202499102431025210.1021/acsomega.3c07410
    [Google Scholar]
  112. OkunogbeA. NugentR. SpencerG. RalstonJ. WildingJ. Economic impacts of overweight and obesity: current and future estimates for eight countries.BMJ Glob. Health2021610e00635110.1136/bmjgh‑2021‑006351 34737167
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013306923240607074032
Loading
/content/journals/cnf/10.2174/0115734013306923240607074032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test