Skip to content
2000
image of Development and In-Vitro Evaluation of Azithromycin-Enriched Niosomal Gel for the Management of Eczema

Abstract

Background

The goal of the current study was to create Azithromycin-loaded niosomes and conduct evaluation for topical eczema management. Eczema is a common dry skin disorder that causes inflammation and may affect people of any age, mainly in early infancy ages. Another term for dermatitis is “Derma” which refers to skin, and “dermatitis” “Tis” refers to inflammation. Both phrases are interchangeably employed. The most prevalent kind of eczema is atopic eczema, which is also often the most chronic type. Azithromycin is a macrolide antibiotic that is employed to treat infection of both the lower and upper respiratory tracts. It also has antimicrobial properties that help in the treatment of skin infections. The topical appeal of AZM-loaded niosomal gel can probably reduce side effects associated with drug molecules.

Objectives

The objective of the present study was to formulate and evaluate topical gel with loaded niosomes for sustained effect that could be beneficial for the treatment of eczema. Creating topical formulations increases drug absorption, diminishes side effects, and improves patient compliance.

Methods

AZM-loaded niosomes were prepared by Ether injection method by using Span60 and Brij30 as a surfactant in a ratio of 2:1:1 along with the combination of Cholesterol.

Results

After several optimization tests, formulation F3 was found to be the best fit for gel formulation. According to SEM analysis, the shape of the particles was almost spherical. A Zetasizer measured the mean diameter of the improved formulation and found it to be 576 nm. The entrapment efficiency of the formulations was found to be 60-89%. Next, employing Carbopol 940, which acts as the gelling agent, the improved formulation was added to a gel. An evaluation of the antibacterial activity of Azithromycin's well-known antimicrobial properties, which are crucial for managing skin infections associated with eczema, was carried out. The optimized formulation exhibited a zone of inhibition that was 3 mm smaller than that of the pure drug. release experiments revealed 59% release for eight hours.

Conclusion

In conclusion, this research successfully developed a topical Azithromycin-loaded niosomal gel, demonstrating promising results in terms of particle morphology, size, drug release profile, and antibacterial activity. The optimized formulation, characterized by its controlled release and potential for reduced side effects, represents a significant advancement in the topical treatment of eczema. Future studies should focus on further clinical evaluations and potential modifications to enhance the efficacy and patient acceptability of the formulation.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873349887250211064235
2025-02-12
2025-07-03
Loading full text...

Full text loading...

References

  1. Kuotsu K. Karim K.M. Mandal A.S. Biswas N. Guha A. Chatterjee S. Behera M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010 1 4 374 380 10.4103/0110‑5558.76435 22247876
    [Google Scholar]
  2. Keservani R.K. Sharma A.K. Ayaz M. Kesharwani R.K. Novel drug delivery system for the vesicular delivery of drug by the niosomes. Int. J. Res. Cont. Rel. 2011 1 1 1 8
    [Google Scholar]
  3. Khandare J.N. Madhavi G. Tamhankar B.M. Niosomes-novel drug delivery system. East. Pharmacist. 1994 37 61
    [Google Scholar]
  4. Basiri L. Rajabzadeh G. Bostan A. Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. Lebensm. Wiss. Technol. 2017 84 471 478 10.1016/j.lwt.2017.06.009
    [Google Scholar]
  5. Kapoor A. Niosomes as efficient nanocarriers for targeted drug delivery. Asian J. Pharm. 2024 18 3 822 831 10.22377/ajp.v18i3.5643
    [Google Scholar]
  6. Muzzalupo R. Tavano L. Niosomal drug delivery for transdermal targeting: Recent advances. Res. Rep. Transd. Drug Deliv. 2015 4 23 33 10.2147/RRTD.S64773
    [Google Scholar]
  7. Kumar M. Mandal U.K. Mahmood S. Dermatological formulations. Dosage Forms, Formulation Developments and Regulations. Cambridge, US Academic Press 2024 613 642 10.1016/B978‑0‑323‑91817‑6.00021‑8
    [Google Scholar]
  8. Kumari R. Verma K. Verma A. Yadav G.K. Maurya S.D. Proniosomes: A key to improved drug delivery. J. Drug Deliv. Ther. 2014 0 0 56 65 10.22270/jddt.v0i0.875
    [Google Scholar]
  9. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  10. Zaid Alkilani A. Abu-Zour H. Alshishani A. Abu-Huwaij R. Basheer H.A. Abo-Zour H. Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: In vitro studies, stability study and cytotoxicity study. Nanomaterials (Basel) 2022 12 20 3570 10.3390/nano12203570 36296760
    [Google Scholar]
  11. Tavano L. Muzzalupo R. Picci N. De Cindio B. Coentrapment of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical Colloids Surf. B Biointerfaces 2014 114 82 88 10.1016/j.colsurfb.2013.09.058 24176886
    [Google Scholar]
  12. Liu T. Guo R. Hua W. Qiu J. Structure behaviors of hemoglobin in PEG 6000/Tween 80/Span 80/H2O niosome system. Colloids Surf. A Physicochem. Eng. Asp. 2007 293 1-3 255 261 10.1016/j.colsurfa.2006.07.053
    [Google Scholar]
  13. Marianecci C. Di Marzio L. Rinaldi F. Celia C. Paolino D. Alhaique F. Esposito S. Carafa M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014 205 187 206 10.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  14. Marianecci C. Rinaldi F. Di Marzio L. Ciogli A. Esposito S. Carafa M. Polysorbate 20 vesicles as multi-drug carriers: In vitro preliminary evaluations. Lett. Drug Des. Discov. 2013 10 3 212 218
    [Google Scholar]
  15. Owodeha-Ashaka K. Ilomuanya M.O. Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog. Biomater. 2021 10 3 207 220 10.1007/s40204‑021‑00164‑5 34549376
    [Google Scholar]
  16. Waqas M.K. Sadia H. Khan M.I. Omer M.O. Siddique M.I. Qamar S. Zaman M. Butt M.H. Mustafa M.W. Rasool N. Development and characterization of niosomal gel of fusidic acid: In-vitro and ex-vivo approaches. Des. Monomers Polym. 2022 25 1 165 174 10.1080/15685551.2022.2086411 35711622
    [Google Scholar]
  17. Mishra A. Kapoor A. Bhargava S. Proniosomal gel as a carrier for improved transdermal drug-delivery. Asian J. Pharm. Clin. Res. 2011 2231 4423
    [Google Scholar]
  18. Yue P.F. Lu X.Y. Zhang Z.Z. Yuan H.L. Zhu W.F. Zheng Q. Yang M. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS Pharm. Sci. Tech. 2009 10 2 376 383 10.1208/s12249‑009‑9216‑3 19381837
    [Google Scholar]
  19. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Cont. Rel. 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  20. Sagadevan S. Koteeswari P. Analysis of structure, surface morphology, optical and electrical properties of copper nanoparticles. J. Nanomed. Res. 2005 2 5 00040
    [Google Scholar]
  21. Lujan H. Griffin W.C. Taube J.H. Sayes C.M. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells. Int. J. Nanomedicine 2019 14 5159 5173 10.2147/IJN.S203330 31371954
    [Google Scholar]
  22. Perrie Y. Ali H. Kirby D.J. Mohammed A.U.R. McNeil S.E. Vangala A. Environmental scanning electron microscope imaging of vesicle systems. Methods Mol. Biol. 2017 1522 131 143 10.1007/978‑1‑4939‑6591‑5_11 27837536
    [Google Scholar]
  23. Lawrence M. Chauhan S. Lawrence S.M. The formation, characterization and stability of non-ionic surfactant vesicles. STP Pharma Sci. 1996 6 1 49 60
    [Google Scholar]
  24. Patel K.K. Kumar P. Thakkar H.P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS Pharm. Sci. Tech. 2012 13 4 1502 1510 10.1208/s12249‑012‑9871‑7 23104306
    [Google Scholar]
  25. Balakrishnan P. Shanmugam S. Lee W.S. Lee W.M. Kim J.O. Oh D.H. Kim D.D. Kim J.S. Yoo B.K. Choi H.G. Woo J.S. Yong C.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 2009 377 1-2 1 8 10.1016/j.ijpharm.2009.04.020 19394413
    [Google Scholar]
  26. Naresh R.R. Pillai G.K. Udupa N. Chandrashekar G. Anti-inflammatory activity of niosome encapsulated diclofenac sodium in arthritic rats. Indian J. Pharmacol. 1994 26 1 46 48
    [Google Scholar]
  27. Okore V.C. Attama A.A. Ofokansi K.C. Esimone C.O. Onuigbo E.B. Formulation and evaluation of niosomes. Indian J. Pharm. Sci. 2011 73 3 323 328 22457561
    [Google Scholar]
  28. Pandey A. Kumar A. Niranjan A.K. Development and evaluation of novel carrier for topical formulation of antifungal drug. World J. Pharm. Res. 2022 11 12 1141 1154
    [Google Scholar]
  29. Pando D. Gutiérrez G. Coca J. Pazos C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng. 2013 117 2 227 234 10.1016/j.jfoodeng.2013.02.020
    [Google Scholar]
  30. Rogerson A. Cummings J. Florence A.T. Adriamycin-loaded niosomes: Drug entrapment, stability and release. J. Microencapsul. 1987 4 4 321 10.3109/02652048709021824
    [Google Scholar]
  31. Nayak S.H. Nakhat P.D. Yeole P.G. Development and evaluation of cosmeceutical hair styling gels of ketoconazole. Ind. J. Pharm. Sci. 2005 52 231 233
    [Google Scholar]
  32. Pandey P. Misra S.K. Kapoor A. Sharma N. Kumari P. Tolnaftate microsponges embedded biocompatible gels for controlled and effective anti dermatophytic activity. Int. Res. J. Pharm. 2018 9 6 128 133 10.7897/2230‑8407.096103
    [Google Scholar]
  33. Rossi A. Campo D. Fortuna M.C. Garelli V. Pranteda G. De Vita G. Sorriso-Valvo L. Di Nunno D. Carlesimo M. A preliminary study on topical cetirizine in the therapeutic management of androgenetic alopecia. J. Dermatolog. Treat. 2018 29 2 149 151 10.1080/09546634.2017.1341610 28604133
    [Google Scholar]
  34. Sarisozen C. Vural I. Levchenko T. Hincal A.A. Torchilin V.P. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Deliv. 2012 19 4 169 176 10.3109/10717544.2012.674163 22506922
    [Google Scholar]
  35. Ng S.F. Rouse J.J. Sanderson F.D. Meidan V. Eccleston G.M. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS Pharm. Sci. Tech. 2010 11 3 1432 1441 10.1208/s12249‑010‑9522‑9 20842539
    [Google Scholar]
  36. Kumar M. Sharma A. Mahmood S. Thakur A. Mirza M.A. Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J. Dispers. Sci. Technol. 2024 45 5 943 956 10.1080/01932691.2023.2188923
    [Google Scholar]
  37. Mahajan N.M. Manmode A.S. Sakarkar D.M. A novel approach in development of diffusion cell for in-vitro diffusion study. Res. J. Pharm. and Tech. 2009 2 2 315 318
    [Google Scholar]
  38. Selvaraj S. Niraimathi V. Nappinnai M. Formulation and evaluation of acyclovir loaded chitosan nanoparticles. Int. J. Pharm. Anal. Res. 2016 5 619 629
    [Google Scholar]
  39. Shabery A.M. Widodo R.T. Chik Z. Formulation and in vivo pain assessment of a novel niosomal lidocaine and prilocaine in an emulsion gel (Emulgel) of semisolid palm oil base for topical drug delivery. Gels 2023 9 2 96 10.3390/gels9020096 36826266
    [Google Scholar]
  40. Smulders S. Kaiser J.P. Zuin S. Van Landuyt K.L. Golanski L. Vanoirbeek J. Wick P. Hoet P.H. Contamination of nanoparticles by endotoxin: Evaluation of different test methods. Part. Fibre. Toxicol. 2012 9 41 10.1186/1743‑8977‑9‑41
    [Google Scholar]
  41. Srinivas S. Kumar Y.A. Hemanth A. Anitha M. Preparation and evaluation of niosomes containing aceclofenac. Dig. J. Nanomater. Biostruct. 2010 5 1 249 254
    [Google Scholar]
  42. Suma U.S. Parthiban S. Senthil Kumar G.P. Tamiz Mani T. Novelty of niosomal gel in tdds application. Asi. J. Res. Biolog. Pharma. Sci. 2015 3 2 41 48
    [Google Scholar]
  43. Szoka F. Jr Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 1980 9 1 467 508 10.1146/annurev.bb.09.060180.002343 6994593
    [Google Scholar]
  44. Tangri P. Khurana S. Niosomes: Formulation and evaluation. Int. J. Biopharm. 2011 2 1 41 53
    [Google Scholar]
  45. Tarekegn A. Joseph N.M. Palani S. Zacharia A. Ayenew Z. Niosomes in targeted drug delivery: Some recent advances. IJPSR 2010 1 9 1 8
    [Google Scholar]
  46. Tavano L. Aiello R. Ioele G. Picci N. Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids Surf. B Biointerfaces 2014 118 7 13 10.1016/j.colsurfb.2014.03.016 24709252
    [Google Scholar]
  47. Jessy S. Sharvari G. Transethosomes and ethosomes for enhanced transdermal delivery of ketorolac tromethamine. Int. J. Curr. Pharm. Res. 2014 6 4 88 93
    [Google Scholar]
  48. Soni S. Baghel K. Soni M.L. Kashaw S.K. Soni V. Size-dependent effects of niosomes on the penetration of methotrexate in skin layers. Fut. J. Pharma. Sci. 2024 10 1 48 10.1186/s43094‑024‑00624‑2
    [Google Scholar]
  49. Moammeri A. Chegeni M.M. Sahrayi H. Ghafelehbashi R. Memarzadeh F. Mansouri A. Akbarzadeh I. Abtahi M.S. Hejabi F. Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Tod. Bio. 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  50. Zhao Y. Wang Y. Ran F. Cui Y. Liu C. Zhao Q. Gao Y. Wang D. Wang S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 2017 7 1 4131 10.1038/s41598‑017‑03834‑2 28646143
    [Google Scholar]
  51. Wey J.S. Gautesen A.K. Estrin J. A note on the stability of a growing sphere. J. Cryst. Grow. 1973 19 3 169 176 10.1016/0022‑0248(73)90106‑1
    [Google Scholar]
  52. Xu B. Lee K-W. Li W. Yaszemski M.J. Lu L. Yang Y. Wang S. A comparative study on cylindrical and spherical models in fabrication of bone tissue engineering scaffolds: Finite element simulation and experiments. Mater. Des. 2021 211 110150 10.1016/j.matdes.2021.110150
    [Google Scholar]
  53. Yaghoobian M. Haeri A. Bolourchian N. Shahhosseni S. Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int. J. Nanomedicine 2020 15 8767 8781 10.2147/IJN.S261932 33204087
    [Google Scholar]
  54. Thakkar M. S B. Opportunities and challenges for niosomes as drug delivery systems. Curr. Drug Deliv. 2016 13 8 1275 1289 10.2174/1567201813666160328113522 27017826
    [Google Scholar]
  55. Nowroozi F. Almasi A. Javidi J. Haeri A. Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran. J. Pharm. Res. 2018 17 Suppl. 2 1 11 31011337
    [Google Scholar]
  56. Ting W.W. Vest C.D. Sontheimer R.D. Review of traditional and novel modalities that enhance the permeability of local therapeutics across the stratum corneum. Int. J. Dermatol. 2004 43 7 538 547 10.1111/j.1365‑4632.2004.02147.x 15230899
    [Google Scholar]
  57. Uchegbu I.F. Florence A.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv. Colloid Interface Sci. 1995 58 1 1 55 10.1016/0001‑8686(95)00242‑I
    [Google Scholar]
  58. Verma S. Singh S.K. Syan N. Mathur P. Valecha V. Nanoparticle vesicular systems: A versatiletool for drug delivery. J. Chem. Pharm. Res. 2010 2 2 496 509
    [Google Scholar]
  59. Vishvakrama P. Sharma S. Liposomes: An overview. J. Drug Deliv. Ther. 2014 1 47 55
    [Google Scholar]
  60. David V. Understanding the main principles of skin care in older adults, art and science dermatology supplement. Nurs Stand. 2012 27 11 59 60
    [Google Scholar]
  61. Abdelaziz A.A. Elbanna T.E. Sonbol F.I. Gamaleldin N.M. El Maghraby G.M. Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: In vitro and in vivo evaluation. Expert Opin. Drug Deliv. 2015 12 2 163 180 10.1517/17425247.2014.942639 25135453
    [Google Scholar]
  62. Haddadian A. Robattorki F.F. Dibah H. Soheili A. Ghanbarzadeh E. Sartipnia N. Hajrasouliha S. Pasban K. Andalibi R. Ch M.H. Azari A. Chitgarzadeh A. Kashtali A.B. Mastali F. Noorbazargan H. Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci. Rep. 2022 12 1 21938 10.1038/s41598‑022‑26400‑x 36536030
    [Google Scholar]
  63. Abonashey S.G. Hassan H.A.F.M. Shalaby M.A. Fouad A.G. Mobarez E. El-Banna H.A. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome. Drug Deliv. Transl. Res. 2024 14 4 1077 1092 10.1007/s13346‑023‑01459‑9 37957473
    [Google Scholar]
  64. Waddad A.Y. Abbad S. Yu F. Munyendo W.L.L. Wang J. Lv H. Zhou J. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int. J. Pharm. 2013 456 2 446 458 10.1016/j.ijpharm.2013.08.040 23998955
    [Google Scholar]
  65. Yadav R. Chanana A. Chawra H.S. Singh R.P. Recent advances in niosomal drug delivery: A review. Int. J. Multidiscip. Res. 2023 5 1 1
    [Google Scholar]
  66. Namdeo A. Mishra P.R. Khopade A.J. Jain N.K. Formulation and evaluation of niosome encapsulated indomethacin. Indian Drugs. 1999 36 6 378 380
    [Google Scholar]
  67. Agrawal S. Jain P. Formulation, evaluation, and in vitro drug diffusion of niosomal gel of selected drug. Int. J. Heal. Sci. 2022 6 S6 7338 7351 10.53730/ijhs.v6nS6.11391
    [Google Scholar]
  68. Somjid S. Krongsuk S. Johns J.R. Cholesterol concentration effect on the bilayer properties and phase formation of niosome bilayers: A molecular dynamics simulation study. J. Mol. Liq. 2018 256 591 598 10.1016/j.molliq.2018.02.077
    [Google Scholar]
  69. Ahmadi S. Seraj M. Chiani M. Hosseini S. Bazzazan S. Akbarzadeh I. Saffar S. Mostafavi E. In vitro development of controlled-release nanoniosomes for improved delivery and anticancer activity of letrozole for breast cancer treatment. Int. J. Nanomedicine 2022 17 17 6233 6255 10.2147/IJN.S384085 36531115
    [Google Scholar]
  70. Korsmeyer R.W. Gurny R. Doelker E. Buri P. Peppas N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983 15 1 25 35 10.1016/0378‑5173(83)90064‑9
    [Google Scholar]
  71. Carter K.C. Dolan T.F. Alexander J. Baillie A.J. Mccolgan C. Visceral leishmaniasis: Drug carrier system characteristics and the ability to clear parasites from the liver, spleen and bone marrow in Leishmania donovani infected BALB/c mice. J. Pharm. Pharmacol. 1989 41 2 87 91 10.1111/j.2042‑7158.1989.tb06399.x 2568434
    [Google Scholar]
  72. Amiri B. Ebrahimi-Far M. Saffari Z. Akbarzadeh A. Soleimani E. Chiani M. Preparation, characterization and cytotoxicity of silibinin-containing nanoniosomes in T47D human breast carcinoma cells. Asian Pac. J. Cancer Prev. 2016 17 8 3835 3838 27644625
    [Google Scholar]
  73. Poustforoosh A. Investigation on the structural and dynamical properties of cationic, anionic, and catanionic niosomes as multifunctional controlled drug delivery system for cabozantinib. Colloids Surf. A Physicochem. Eng. Asp. 2024 687 133547 10.1016/j.colsurfa.2024.133547
    [Google Scholar]
  74. Bashkeran T. Kamaruddin A.H. Ngo T.X. Suda K. Umakoshi H. Watanabe N. Nadzir M.M. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon. 2023 9 8 18710 10.1016/j.heliyon.2023.e18710
    [Google Scholar]
  75. Kshitij B. Makeshwar A. Suraj R. Wasankar A. Niosome: A novel drug delivery system. Asi. J. Pharm. Res. 2013 3 1 15 19
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873349887250211064235
Loading
/content/journals/cnanom/10.2174/0124681873349887250211064235
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Azithromycin, niosomal gel, eczema, dermatitis, atopic eczema
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test