Skip to content
2000
image of Nano Innovation: Enhancing Food Packaging through Nanotechnology

Abstract

The utilization of nanotechnology in developing novel packaging components has grown significantly in recent years, and it is anticipated to have a significant influence on the food industry shortly. It offers to produce food packaging with improved qualities that will assist food goods in lasting longer on the shelf. The present article comprehensively discusses the nanoparticles commonly used in food packaging, the significant changes they bring to the qualities of the material, and the commercially available packaging materials based on nanotechnology. This review primarily focuses on using nanotechnologies in food processing and packaging, explicitly examining their impact on food quality and safety. To comprehend the function of enhanced, active, and antimicrobial packaging in food packaging. The utilization of nanotechnology in food products has experienced a significant surge in popularity in both developed and developing nations. The review was obtained from searches conducted on academic databases such as Sci-Hub, Google Scholar, PubMed, etc. Collected data from many sources has been compiled and presented here to facilitate further research on the application of nanotechnology in food packaging. In the current review, we also discussed the different organic and inorganic nanomaterials. The article also discusses consumer health and safety concerns, highlighting the significance of thorough safety assessments and clear communication. Nanotechnology has numerous uses in diverse areas of food technology. This analysis examines the potential of nanotechnology to improve the quality and safety of packaged food. Nanotechnology in food packaging is highly encouraging, providing substantial advantages in terms of food preservation, safety, and sustainability. This paper offers a thorough examination of present trends, technological progress, and future predictions to provide a full understanding of how nanotechnology can fundamentally transform food packaging. This transformation will enable the development of creative, environmentally friendly, and more secure food systems.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137314364240920052006
2024-10-07
2024-12-26
Loading full text...

Full text loading...

References

  1. Minocha N. Sharma N. Verma R. Kaushik D. Pandey P. Nanoparticles S.L. Solid Lipid Nanoparticles: Peculiar Strategy to Deliver Bio-Proactive Molecules. Recent Pat. Nanotechnol. 2023 17 3 228 242 10.2174/1872210516666220317143351 35301957
    [Google Scholar]
  2. Duncan T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011 363 1 1 24 10.1016/j.jcis.2011.07.017 21824625
    [Google Scholar]
  3. cobb M.D. Macoubrie J. Public perceptions about nanotechnology: Risks, benefits and trust. J. Nanopart. Res. 2004 6 4 395 405 10.1007/s11051‑004‑3394‑4
    [Google Scholar]
  4. Currall S.C. King E.B. Lane N. Madera J. Turner S. What drives public acceptance of nanotechnology? Nat. Nanotechnol. 2006 1 3 153 155 10.1038/nnano.2006.155 18654170
    [Google Scholar]
  5. Castellini O.M. Walejko G.K. Holladay C.E. Theim T.J. Zenner G.M. Crone W.C. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts. J. Nanopart. Res. 2007 9 2 183 189 10.1007/s11051‑006‑9160‑z
    [Google Scholar]
  6. Market Attitude Research Services Australian Community Attitudes about Nanotechnology – 2005–2009. Australia Department of Industry, Innovation, Science and Research 2009
    [Google Scholar]
  7. Singh Astha, Patel Aakriti, Chaudhary Hema, Yadav Kiran and Minocha Neha*, Nanotheranostics: The Fabrication of Theranostics with Nanoparticles and their Application to Treat the Neurological Disorders. Recent Pat. Nanotechnol. 2024 ••• 18
    [Google Scholar]
  8. Primožič M. Knez Ž. Leitgeb M. Primožiˇc (Bio)Nanotechnology in Food Science—Food Packaging. Nanomaterials (Basel) 2021 11 2 292 10.3390/nano11020292 33499415
    [Google Scholar]
  9. Luttge R. Nanotechnology. Microfabrication for Industrial Applications William Andrew Publishing 2011
    [Google Scholar]
  10. He X. Deng H. Hwang H.M. The current application of nanotechnology in food and agriculture. Yao Wu Shi Pin Fen Xi 2019 27 1 1 21 30648562
    [Google Scholar]
  11. Singh T. Shukla S. Kumar P. Wahla V. Bajpai V.K. Rather I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol. 2017 8 1501 10.3389/fmicb.2017.01501 28824605
    [Google Scholar]
  12. Gupta A. Eral H.B. Hatton T.A. Doyle P.S. Nanoemulsions: formation, properties and applications. Soft Matter 2016 12 11 2826 2841 10.1039/C5SM02958A 26924445
    [Google Scholar]
  13. Ramsden J.J. Bionanotechnology. Nanotechnology William Andrew Publishing 2016
    [Google Scholar]
  14. Dasgupta N. Ranjan S. Mundekkad D. Ramalingam C. Shanker R. Kumar A. Nanotechnology in agro-food: From field to plate. Food Res. Int. 2015 69 381 400 10.1016/j.foodres.2015.01.005
    [Google Scholar]
  15. Kuswandi B. Moradi M. Improvement of food packaging based on functional nanomaterial. Nanotechnology: Applications in Energy, Drug and Food. Siddiquee S. Melvin G.J.H. Rahman M.M. Cham, Switzerland Springer 2019 309 344 10.1007/978‑3‑319‑99602‑8_16
    [Google Scholar]
  16. O’ Callaghan K.A.M. Kerry J.P. Consumer attitudes towards the application of smart packaging technologies to cheese products. Food Packag. Shelf Life 2016 9 1 9 10.1016/j.fpsl.2016.05.001
    [Google Scholar]
  17. Shukla P. Chaurasia P. Younis K. Qadri O.S. Faridi S.A. Srivastava G. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering 2019 4 1 11 10.1007/s41204‑019‑0058‑2
    [Google Scholar]
  18. Tsagkaris A.S. Tzegkas S.G. Danezis G.P. Nanomaterials in food packaging: state of the art and analysis. J. Food Sci. Technol. 2018 55 8 2862 2870 10.1007/s13197‑018‑3266‑z 30065395
    [Google Scholar]
  19. Sharma A. Thakur M. Bhattacharya M. Mandal T. Goswami S. Commercial application of cellulose nano-composites – A review. Biotechnol. Rep. (Amst.) 2019 21 e00316 10.1016/j.btre.2019.e00316 30847286
    [Google Scholar]
  20. Ferrer A. Pal L. Hubbe M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crops Prod. 2017 95 574 582 10.1016/j.indcrop.2016.11.012
    [Google Scholar]
  21. Naseer B. Srivastava G. Qadri O.S. Faridi S.A. Islam R.U. Younis K. Importance and health hazards of nanoparticles used in the food industry. Nanotechnol. Rev. 2018 7 6 623 641 10.1515/ntrev‑2018‑0076
    [Google Scholar]
  22. Arrieta M.P. Fortunati E. Burgos N. Peltzer M.A. López J. Peponi L. Nanocellulose-based polymeric blends for food packaging applications. Polymers 2016 16 3 423 10.1016/B978‑0‑323‑44248‑0.00007‑9
    [Google Scholar]
  23. Zubair M. Ullah A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 2020 60 3 406 434 10.1080/10408398.2018.1534800 30614251
    [Google Scholar]
  24. Li X. Ji N. Qiu C. Xia M. Xiong L. Sun Q. The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: A comparative study. Ind. Crops Prod. 2015 77 565 574 10.1016/j.indcrop.2015.09.026
    [Google Scholar]
  25. Oymaci P. Altinkaya S.A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocoll. 2016 54 1 9 10.1016/j.foodhyd.2015.08.030
    [Google Scholar]
  26. Morán D. Gutiérrez G. Blanco-López M.C. Marefati A. Rayner M. Matos M. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Appl. Sci. (Basel) 2021 11 10 4547 10.3390/app11104547
    [Google Scholar]
  27. Yu M. Ji N. Wang Y. Dai L. Xiong L. Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr. Rev. Food Sci. Food Saf. 2021 20 1 1075 1100 10.1111/1541‑4337.12677 33443809
    [Google Scholar]
  28. Dularia C. Sinhmar A. Thory R. Pathera A.K. Nain V. Development of starch nanoparticles based composite films from non-conventional source - Water chestnut (Trapa bispinosa). Int. J. Biol. Macromol. 2019 136 1161 1168 10.1016/j.ijbiomac.2019.06.169 31247231
    [Google Scholar]
  29. Neha M. Development of wheatgrass (Triticum aestivum) extract loaded solid lipid nanoparticles using central composite design and its characterization- its in-vitro anti-cancer activity. Curr. Nanomater. 2024 9 4 339 354 10.2174/0124054615266447231107070012
    [Google Scholar]
  30. Biswal A.K. Misra P.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 2020 250 123014 10.1016/j.matchemphys.2020.123014
    [Google Scholar]
  31. Carbone M. Donia D.T. Sabbatella G. Antiochia R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 2016 28 4 273 279 10.1016/j.jksus.2016.05.004
    [Google Scholar]
  32. Ahmad S.S. Yousuf O. Islam R.U. Younis K. Silver nanoparticles as an active packaging ingredient and its toxicity. Packag. Technol. Sci. 2021 34 11-12 653 663 10.1002/pts.2603
    [Google Scholar]
  33. Ashfaq A. Khursheed N. Fatima S. Anjum Z. Younis K. Application of nanotechnology in food packaging. Pros and Cons. Journal of Agriculture and Food Research. 2022 7 100270
    [Google Scholar]
  34. Mohr L.C. Capelezzo A.P. Baretta C.R.D.M. Martins M.A.P.M. Fiori M.A. Mello J.M.M. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym. Test. 2019 77 105867 10.1016/j.polymertesting.2019.04.014
    [Google Scholar]
  35. Baranowska-Wójcik E. Szwajgier D. Oleszczuk P. Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol. Trace Elem. Res. 2020 193 1 118 129 10.1007/s12011‑019‑01706‑6 30982201
    [Google Scholar]
  36. Venkatasubbu G.D. Baskar R. Anusuya T. Seshan C.A. Chelliah R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B Biointerfaces 2016 148 600 606 10.1016/j.colsurfb.2016.09.042 27694049
    [Google Scholar]
  37. Siripatrawan U. Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018 84 125 134 10.1016/j.foodhyd.2018.04.049
    [Google Scholar]
  38. McClements D.J. Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Sci. Food. 2017 1 1 6
    [Google Scholar]
  39. Kim I. Viswanathan K. Kasi G. Thanakkasaranee S. Sadeghi K. Seo J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022 38 4 537 565 10.1080/87559129.2020.1737709
    [Google Scholar]
  40. Abbas M. Buntinx M. Deferme W. Peeters R. (Bio) polymer/ZnO nanocomposites for packaging applications: a review of gas barrier and mechanical properties. Nanomaterials (Basel) 2019 9 10 1494 10.3390/nano9101494 31635113
    [Google Scholar]
  41. Bajpai V.K. Kamle M. Shukla S. Mahato D.K. Chandra P. Hwang S.K. Kumar P. Huh Y.S. Han Y-K. Prospects of using nanotechnology for food preservation, safety, and security. Yao Wu Shi Pin Fen Xi 2018 26 4 1201 1214 30249319
    [Google Scholar]
  42. Ranjan S. Dasgupta N. Chakraborty A.R. Melvin Samuel S. Ramalingam C. Shanker R. Kumar A. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J. Nanopart. Res. 2014 16 6 2464 10.1007/s11051‑014‑2464‑5
    [Google Scholar]
  43. Kuswandi B. Environmental friendly food nano-packaging. Environ. Chem. Lett. 2017 15 2 205 221 10.1007/s10311‑017‑0613‑7
    [Google Scholar]
  44. Brody A.L. Case studies on nanotechnologies for food packaging. Food Technol. 2007 61 102 107
    [Google Scholar]
  45. Kim S.W. Cha S.H. Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer‐based nanocomposites for food packaging films: Effects of nanoclay loading. J. Appl. Polym. Sci. 2014 131 11 app.40289 10.1002/app.40289
    [Google Scholar]
  46. Joye I.J. Davidov-Pardo G. McClements D.J. Nanotechnology in food processing. Encyclopedia of Food and Health. Caballero B. Finglas P.M. Toldrá F. Oxford, UK Academic Press 2016 49 55 10.1016/B978‑0‑12‑384947‑2.00481‑5
    [Google Scholar]
  47. Nile S.H. Baskar V. Selvaraj D. Nile A. Xiao J. Kai G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett. 2020 12 1 45 10.1007/s40820‑020‑0383‑9 34138283
    [Google Scholar]
  48. Gabr M.H. Okumura W. Ueda H. Kuriyama W. Uzawa K. Kimpara I. Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos., Part B Eng. 2015 69 94 100 10.1016/j.compositesb.2014.09.033
    [Google Scholar]
  49. Dasgupta N. Ranjan S. Patra D. Srivastava P. Kumar A. Ramalingam C. Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem. Biol. Interact. 2016 253 100 111 10.1016/j.cbi.2016.05.018 27180205
    [Google Scholar]
  50. Mustafa F. Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances 2020 10 33 19309 19336 10.1039/D0RA01084G 35515480
    [Google Scholar]
  51. Malhotra B. Keshwani A. Kharkwal H. Antimicrobial food packaging: potential and pitfalls. Front. Microbiol. 2015 6 611 10.3389/fmicb.2015.00611 26136740
    [Google Scholar]
  52. Vilela C. Kurek M. Hayouka Z. Röcker B. Yildirim S. Antunes M.D.C. Nilsen-Nygaard J. Pettersen M.K. Freire C.S.R. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018 80 212 222 10.1016/j.tifs.2018.08.006
    [Google Scholar]
  53. Becerril R. Nerín C. Silva F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules 2020 25 5 1134 10.3390/molecules25051134 32138320
    [Google Scholar]
  54. Chaudhary P. Fatima F. Kumar A. Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater. 2020 30 12 5180 5192 10.1007/s10904‑020‑01674‑8 32837459
    [Google Scholar]
  55. Neethirajan S. Ragavan V. Weng X. Chand R. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors (Basel) 2018 8 1 23 10.3390/bios8010023 29534552
    [Google Scholar]
  56. Costa C. Conte A. Alessandro M. Nobile D. Use of metal nanoparticles for active packaging applications. Antimicrobial Food Packaging. Barros-Velázquez J. San Diego, CA, USA Academic Press 2016 399 406 10.1016/B978‑0‑12‑800723‑5.00031‑0
    [Google Scholar]
  57. Valdés A. Mellinas A.C. Ramos M. Burgos N. Jiménez A. Garrigós M.C. Use of herbs, spices and their bioactive compounds in active food packaging. RSC Advances 2015 5 50 40324 40335 10.1039/C4RA17286H
    [Google Scholar]
  58. Rehman A. Jafari S.M. Aadil R.M. Assadpour E. Randhawa M.A. Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci. Technol. 2020 101 106 121 10.1016/j.tifs.2020.05.001
    [Google Scholar]
  59. Ahmed J. Arfat Y.A. Bher A. Mulla M. Jacob H. Auras R. Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. J. Food Sci. 2018 83 5 1299 1310 10.1111/1750‑3841.14121 29660773
    [Google Scholar]
  60. Kim S. Song K.B. Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 2018 53 6 1549 1557 10.1111/ijfs.13737
    [Google Scholar]
  61. Marcous A. Rasouli S. Ardestani F. Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia Coli O157:H7 in fresh calf minced meat. Packag. Technol. Sci. 2017 30 11 693 701 10.1002/pts.2312
    [Google Scholar]
  62. Madhusudan P. Chellukuri N. Shivakumar N. Smart packaging of food for the 21st century – A review with futuristic trends, their feasibility and economics. Mater. Today Proc. 2018 5 10 21018 21022 10.1016/j.matpr.2018.06.494
    [Google Scholar]
  63. Bumbudsanpharoke N. Ko S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019 12 3 489 500 10.1007/s12274‑018‑2237‑z
    [Google Scholar]
  64. Halonen N. Pálvölgyi P.S. Bassani A. Fiorentini C. Nair R. Spigno G. Kordas K. Bio-based smart materials for food packaging and sensors—A review. Front. Mater. 2020 7 82 10.3389/fmats.2020.00082
    [Google Scholar]
  65. Kuswandi B. Moradi M. Improvement of food packaging based on functional nanomaterial. Nanotechnology: Applications in Energy, Drug and Food. Siddiquee S. Melvin G.J.H. Rahman M.M. Cham, Switzerland Springer 2019 309 344 10.1007/978‑3‑319‑99602‑8_16
    [Google Scholar]
  66. Farooq A. Patoary M.K. Zhang M. Mussana H. Li M. Naeem M.A. Mushtaq M. Farooq A. Liu L. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int. J. Biol. Macromol. 2020 154 1050 1073 10.1016/j.ijbiomac.2020.03.163 32201207
    [Google Scholar]
  67. Abdul Khalil H.P.S. Davoudpour Y. Saurabh C.K. Hossain M.S. Adnan A.S. Dungani R. Paridah M.T. Islam Sarker M.Z. Fazita M.R.N. Syakir M.I. Haafiz M.K.M. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016 64 823 836 10.1016/j.rser.2016.06.072
    [Google Scholar]
  68. Flores S. Famá L. Rojas A.M. Goyanes S. Gerschenson L. Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Res. Int. 2007 40 2 257 265 10.1016/j.foodres.2006.02.004
    [Google Scholar]
  69. Sadeghizadeh-Yazdi J. Habibi M. Kamali A.A. Banaei M. Application of edible and biodegradable starch-based films in food packaging: A systematic review and meta-analysis. Curr. Res. Nutr. Food Sci. 2019 7 3 624 637 10.12944/CRNFSJ.7.3.03
    [Google Scholar]
  70. Ashori A. Bahrami R. Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym. Plast. Technol. Eng. 2014 53 3 312 318 [Google Scholar]. [CrossRef]. 10.1080/03602559.2013.866246
    [Google Scholar]
  71. Jayakumar A. K v H. T S S. Joseph M. Mathew S. G P. Nair I.C. e K R. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 2019 136 395 403 10.1016/j.ijbiomac.2019.06.018 31173829
    [Google Scholar]
  72. Kim H.Y. Park S.S. Lim S.T. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf. B Biointerfaces 2015 126 607 620 10.1016/j.colsurfb.2014.11.011 25435170
    [Google Scholar]
  73. Cazón P. Vázquez M. Applications of chitosan as food packaging materials. Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment. Cham, Switzerland Springer 2019 81 123 10.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  74. Radhakrishnan Y. Gopal G. Lakshmanan C.C. Nandakumar K.S. Chitosan nanoparticles for generating novel systems for better applications: A review. Mol. Genet. Med. 2015 9 1 10
    [Google Scholar]
  75. Kong M. Chen X.G. Xing K. Park H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010 144 1 51 63 10.1016/j.ijfoodmicro.2010.09.012 20951455
    [Google Scholar]
  76. Kravanja G. Primožič M. Knez Ž. Leitgeb M. Chitosan-based (nano)materials for novel biomedical applications. Molecules 2019 24 10 1960 10.3390/molecules24101960 31117310
    [Google Scholar]
  77. Dutta P.K. Tripathi S. Mehrotra G.K. Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009 114 4 1173 1182 10.1016/j.foodchem.2008.11.047
    [Google Scholar]
  78. Nagy A. Harrison A. Sabbani S. Munson R.S. Jr Dutta P.K. Waldman W.J. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomedicine 2011 6 1833 1852 21931480
    [Google Scholar]
  79. Yilmaz Atay H. Antibacterial activity of chitosan-based systems. Funct. Chitosan 2020 2020 457 489
    [Google Scholar]
  80. Cazón P. Vázquez M. Applications of chitosan as food packaging materials. Sustainable Agriculture Reviews Springer 2019 10.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  81. Kadam D. Momin B. Palamthodi S. Lele S.S. Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydr. Polym. 2019 211 124 132 10.1016/j.carbpol.2019.02.005 30824072
    [Google Scholar]
  82. Lin D. Yang Y. Wang J. Yan W. Wu Z. Chen H. Zhang Q. Wu D. Qin W. Tu Z. Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int. J. Biol. Macromol. 2020 154 123 133 10.1016/j.ijbiomac.2020.03.070 32171840
    [Google Scholar]
  83. Yadav S. Mehrotra G.K. Dutta P.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 2021 334 127605 10.1016/j.foodchem.2020.127605 32738726
    [Google Scholar]
  84. He X. Hwang H-M. Nanotechnology in food science: Functionality, applicability, and safety assessment. Yao Wu Shi Pin Fen Xi 2016 24 4 671 681 28911604
    [Google Scholar]
  85. Xia Y. Rubino M. Auras R. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant. Environ. Sci. Technol. 2014 48 23 13617 13624 10.1021/es502622c 25369541
    [Google Scholar]
  86. Han W. Yu Y. Li N. Wang L. Application and safety assessment for nano-composite materials in food packaging. Chin. Sci. Bull. 2011 56 12 1216 1225 10.1007/s11434‑010‑4326‑6
    [Google Scholar]
  87. Oberdörster G. Stone V. Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007 1 1 2 25 10.1080/17435390701314761
    [Google Scholar]
  88. Bahadar H. Maqbool F. Niaz K. Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 2016 20 1 1 11 26286636
    [Google Scholar]
  89. Brandelli A. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Sci. Hum. Wellness 2020 9 1 8 20 10.1016/j.fshw.2019.12.003
    [Google Scholar]
  90. Mauricio M.D. Guerra-Ojeda S. Marchio P. Valles S.L. Aldasoro M. Escribano-Lopez I. Herance J.R. Rocha M. Vila J.M. Victor V.M. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell Longev. 2018 2018 6231482 10.1155/2018/6231482
    [Google Scholar]
  91. Souza V.G.L. Fernando A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life 2016 8 63 70 10.1016/j.fpsl.2016.04.001
    [Google Scholar]
  92. Qadri O.S. Younis K. Srivastava G. Srivastava A.K. Nanotechnology in Packaging of Fresh Fruits and Vegetables. Emerging Postharvest Treatment of Fruits and Vegetables Apple Academic Press 2018
    [Google Scholar]
  93. Dimitrijevic M. Karabasil N. Boskovic M. Teodorovic V. Vasilev D. Djordjevic V. Kilibarda N. Cobanovic N. Safety aspects of nanotechnology applications in food packaging. Procedia Food Sci. 2015 5 57 60 10.1016/j.profoo.2015.09.015
    [Google Scholar]
  94. Divya K. Jisha M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018 16 1 101 112 10.1007/s10311‑017‑0670‑y
    [Google Scholar]
  95. Bumbudsanpharoke N. Ko S. Nano-food packaging: an overview of market, migration research, and safety regulations. J. Food Sci. 2015 80 5 R910 R923 10.1111/1750‑3841.12861 25881665
    [Google Scholar]
  96. Bandyopadhyay J. Ray S.S. Are nanoclay‐containing polymer composites safe for food packaging applications?—An overview. J. Appl. Polym. Sci. 2019 136 12 47214 10.1002/app.47214
    [Google Scholar]
  97. Kupnik K. Primožič M. Kokol V. Leitgeb M. Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel) 2020 12 12 2825 10.3390/polym12122825 33261198
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137314364240920052006
Loading
/content/journals/cnano/10.2174/0115734137314364240920052006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test