Skip to content
2000
image of Nanoencapsulation as an Ally of the Bioactive Compound Carvacrol: A Review of 10 Years of Advances

Abstract

Foodborne diseases (FBDs) are a major global public health problem, causing millions of deaths annually and substantial economic losses. Antimicrobial treatment is increasingly challenged by bacterial resistance. Essential oils from herbs and spices, such as carvacrol from thyme and oregano, offer potential solutions due to their broad-spectrum antimicrobial properties. However, its stability and its controlled release are affected by media and environmental conditions. Nanoencapsulation presents a promising alternative to address these challenges. This review analyzes 44 original papers and 21 patents concerning the recent advancements in the nanoencapsulation of carvacrol over the past decade, focusing on natural matrices and their applications in food, packaging, and human health fields. Various encapsulation techniques and matrices have been explored, demonstrating that nanoencapsulation can maintain the stability and antimicrobial efficacy of carvacrol. Moreover, nanoencapsulated carvacrol shows promising applications in inhibiting biofilm formation and quorum sensing, as well as exhibiting anticancer and anti-inflammatory effects. Patents related to nanoencapsulated carvacrol highlight its potential for intelligent packaging and healthcare. Nanoencapsulated carvacrol is a promising alternative to synthetic antimicrobials and as an adjuvant in inflammatory disease treatments and cancer, offering enhanced efficacy and versatility in applications.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137326553240917142721
2024-10-03
2024-10-12
Loading full text...

Full text loading...

References

  1. World Health Organization (WHO) Estimaciones de la OMS sobre la carga mundial de enfermedades de transmisión alimentaria. 2015 Available From: https://iris.who.int/bitstream/handle/10665/200047/WHO_FOS_15.02_spa.pdf;jsessionid=6C6C6CDD1134F5F0D7EBB7E2E7F290B3?sequence=1
  2. Novoa-Farías O. Frati-Munari A.C. Peredo M.A. Flores-Juárez S. Novoa-García O. Galicia-Tapia J. Romero-Carpio C.E. Susceptibilidad de las bacterias aisladas de infecciones gastrointestinales agudas a la rifaximina y otros agentes antimicrobianos en México. Rev. Gastroenterol. Mex. 2016 81 1 3 10 10.1016/j.rgmx.2015.07.003 26525276
    [Google Scholar]
  3. Miranda-Novales M.G. Resistencia antimicrobiana del Staphylococcus aureus en México. Bol. Méd. Hosp. Infant. México 2011 68 4 262 270
    [Google Scholar]
  4. Kachur K. Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020 60 18 3042 3053 10.1080/10408398.2019.1675585
    [Google Scholar]
  5. Granata G. Stracquadanio S. Leonardi M. Napoli E. Consoli G.M.L. Cafiso V. Stefani S. Geraci C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018 269 June 286 292 10.1016/j.foodchem.2018.06.140 30100436
    [Google Scholar]
  6. Ayres Cacciatore F. Dalmás M. Maders C. Ataíde Isaía H. Brandelli A. da Silva Malheiros P. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res. Int. 2020 133 133 109143 10.1016/j.foodres.2020.109143 32466924
    [Google Scholar]
  7. Tampau A. González-Martínez C. Chiralt A. Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. React. Funct. Polym. 2020 153 153 104603 10.1016/j.reactfunctpolym.2020.104603
    [Google Scholar]
  8. Tampau A. González-Martinez C. Chiralt A. Carvacrol encapsulation in starch or PCL based matrices by electrospinning. J. Food Eng. 2017 214 245 256 10.1016/j.jfoodeng.2017.07.005
    [Google Scholar]
  9. Tampau A. González-Martínez C. Chiralt A. Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll. 2018 79 158 169 10.1016/j.foodhyd.2017.12.021
    [Google Scholar]
  10. Galvão J.G. Santos R.L. Silva A.R.S.T. Santos J.S. Costa A.M.B. Chandasana H. Andrade-Neto V.V. Torres-Santos E.C. Lira A.A.M. Dolabella S. Scher R. Kima P.E. Derendorf H. Nunes R.S. Carvacrol loaded nanostructured lipid carriers as a promising parenteral formulation for leishmaniasis treatment. Eur. J. Pharm. Sci. 2020 150 April 105335 10.1016/j.ejps.2020.105335 32272211
    [Google Scholar]
  11. da Silva Lima A. Maciel A.P. Mendonça C.J.S. Costa Junior L.M. Use of encapsulated carvacrol with yeast cell walls to control resistant strains of Rhipicephalus microplus (Acari: Ixodidae). Ind. Crops Prod. 2017 108 June 190 194 10.1016/j.indcrop.2017.06.037
    [Google Scholar]
  12. Figueroa-Lopez K.J. Vicente A.A. Reis M.A.M. Torres-Giner S. Lagaron J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials (Basel) 2019 9 2 144 10.3390/nano9020144 30678126
    [Google Scholar]
  13. Heckler C. Marques Maders Silva C. Ayres Cacciatore F. Daroit D.J. da Silva Malheiros P. Thymol and carvacrol in nanoliposomes: Characterization and a comparison with free counterparts against planktonic and glass-adhered Salmonella. Lebensm. Wiss. Technol. 2020 127 March 109382 10.1016/j.lwt.2020.109382
    [Google Scholar]
  14. Bazana M.T. Codevilla C.F. de Menezes C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr. Opin. Food Sci. 2019 26 47 56 10.1016/j.cofs.2019.03.005
    [Google Scholar]
  15. Luna M. Beltran O. Encinas-Basurto D.A. Ballesteros-Monrreal M.G. Topete A. Hassan N. López-Mata M.A. Reyes-Márquez V. Valdez M.A. Juarez J. High antibacterial performance of hydrophobic chitosan-based nanoparticles loaded with Carvacrol. Colloids Surf. B Biointerfaces 2021 2022 209 10.1016/j.colsurfb.2021.112191 34781078
    [Google Scholar]
  16. Requena R. Vargas M. Chiralt A. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices. Food Chem. 2019 277 38 45 10.1016/j.foodchem.2018.10.093 30502160
    [Google Scholar]
  17. Goreva A.V. Shishatskaya E.I. Volova T.G. Sinskey A.J. Characterization of polymeric microparticles based on resorbable polyesters of oxyalkanoic acids as a platform for deposition and delivery of drugs. Polym. Sci. Ser. A 2012 54 2 94 105 10.1134/S0965545X12020022
    [Google Scholar]
  18. Anandharamakrishnan C. Techniques for nanoencapsulation of food ingredients. 2014 Available From: http://www.springer.com/series/10203%0Ahttp://link.springer.com/10.1007/978-1-4614-9387-7
  19. Vitali A. Stringaro A. Colone M. Muntiu A. Angiolella L. Antifungal Carvacrol Loaded Chitosan Nanoparticles. Antibiotics (Basel) 2021 11 1 11 10.3390/antibiotics11010011 35052888
    [Google Scholar]
  20. Faridi Esfanjani A. Jafari S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016 146 532 543 10.1016/j.colsurfb.2016.06.053 27419648
    [Google Scholar]
  21. Pisoschi A.M. Pop A. Cimpeanu C. Turcuş V. Predoi G. Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur. J. Med. Chem. 2018 157 1326 1345 10.1016/j.ejmech.2018.08.076 30196058
    [Google Scholar]
  22. Taouzinet L. Djaoudene O. Fatmi S. Bouiche C. Amrane-Abider M. Bougherra H. Rezgui F. Madani K. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry. Processes (Basel) 2023 11 5 1459 10.3390/pr11051459
    [Google Scholar]
  23. Anandharamakrishnan C. Nanoencapsulation of Food Bioactive Compounds. Techniques for Nanoencapsulation of Food Ingredients Berlin, Heidelberg Springer Link 2014 10.1007/978‑1‑4614‑9387‑7_1
    [Google Scholar]
  24. Shakeri F. Shakeri S. Hojjatoleslami M. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. J. Food Sci. 2014 79 4 N697 N705 10.1111/1750‑3841.12406 24621231
    [Google Scholar]
  25. Murueva A.V. Shishatskaya E.I. Kuzmina A.M. Volova T.G. Sinskey A.J. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug. J. Mater. Sci. Mater. Med. 2013 24 8 1905 1915 10.1007/s10856‑013‑4941‑2 23674057
    [Google Scholar]
  26. Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym. Bull. 2022 79 9 6885 6904 10.1007/s00289‑021‑03781‑z
    [Google Scholar]
  27. Bao H. Ding H.H. Charles A.P.R. Hui D. Rakshit S. Nahashon S. Wu Y. Application of yellow mustard mucilage in encapsulation of essential oils and polyphenols using spray drying. Food Hydrocoll. 2023 143 108815 10.1016/j.foodhyd.2023.108815
    [Google Scholar]
  28. Estevinho B. N. Rocha F. A Key for the Future of the Flavors in Food Industry: Nanoencapsulation and Microencapsulation. Nanotechnology Applications in Food: Flavor, Stability, Nutrition and Safety Cambridge, Massachusetts Academic Press 2017 10.1016/B978‑0‑12‑811942‑6.00001‑7
    [Google Scholar]
  29. Jaiswal L. Shankar S. Rhim J. W. Applications of nanotechnology in food microbiology. Methods in Microbiology Amsterdam Elsevier 2019 10.1016/bs.mim.2019.03.002
    [Google Scholar]
  30. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  31. Bernal-Mercado A.T. Juarez J. Valdez M.A. Ayala-Zavala J.F. Del-Toro-Sánchez C.L. Encinas-Basurto D. Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas aeruginosa Biofilms. Molecules 2022 27 3 699 10.3390/molecules27030699 35163966
    [Google Scholar]
  32. Shishir M.R.I. Xie L. Sun C. Zheng X. Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018 78 34 60 10.1016/j.tifs.2018.05.018
    [Google Scholar]
  33. Sun X. Cameron R.G. Bai J. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll. 2020 100 105420 10.1016/j.foodhyd.2019.105420
    [Google Scholar]
  34. Pateiro M. Gómez B. Munekata P.E.S. Barba F.J. Putnik P. Kovačević D.B. Lorenzo J.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 2021 26 6 1547 10.3390/molecules26061547 33799855
    [Google Scholar]
  35. Bin Xu Jiyao Z. Carvacrol-loaded zein-based nano-particles and preparation method thereof. CN Patent 115844007 2022
  36. Ashby M.F. Material profiles. Materials and the Environment: Eco-informed Material Choice Amsterdam Elsevier 2013 10.1016/B978‑0‑12‑385971‑6.00015‑4
    [Google Scholar]
  37. Castro-Mayorga J.L. Fabra M.J. Pourrahimi A.M. Olsson R.T. Lagaron J.M. The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod. Process. 2017 101 32 44 10.1016/j.fbp.2016.10.007
    [Google Scholar]
  38. Manoj Kumar S. Jifrina Premnath B. Parimelazhagan R. Govindasamy C. Seralathan K.K. Namasivayam N. Anticancer effects of pH- sensitive carvacrol zinc oxide quantum dots on DMBA induced mammary carcinoma in female sprague dawley rats. J. King Saud Univ. Sci. 2024 36 2 103029 10.1016/j.jksus.2023.103029
    [Google Scholar]
  39. Esquivel-Castro T.A. Robledo-Trujillo G. Oliva J. Rosu H.C. Rodríguez-González V. A functional SiO2-TiO2 mesoporous assembly designed for the controlled release of carvacrol. Appl. Surf. Sci. Adv. 2022 2023 13 10.1016/j.apsadv.2023.100378
    [Google Scholar]
  40. Akhlaq A. Ashraf M. Omer M.O. Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS Omega 2023 8 35 31826 31838 10.1021/acsomega.3c03337 37692253
    [Google Scholar]
  41. Gamal A. Aboelhadid S.M. Abo El-Ela F.I. Abdel-Baki A.A.S. Ibrahium S.M. EL-Mallah A.M. Al-Quraishy S. Hassan A.O. Gadelhaq S.M. Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks. Microorganisms 2023 11 3 733 10.3390/microorganisms11030733 36985306
    [Google Scholar]
  42. Osanloo M. Alipanah H. Farjam M. Taheri A. Zarenezhad E. Anticancer Activity of Chitosan Nanoparticles Containing Satureja khuzistanica Essential Oil, and Carvacrol against Human Melanoma and Breast Cancer. Russ. J. Bioorganic Chem. 2023 49 3 594 601 10.1134/S1068162023030160
    [Google Scholar]
  43. Zhang J. Cran M.J. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J. Appl. Polym. Sci. 2022 139 23 52319 10.1002/app.52319
    [Google Scholar]
  44. Yammine J. Gharsallaoui A. Fadel A. Karam L. Ismail A. Chihib N.E. Encapsulation of carvacrol and thymol for a persistent removal of Listeria innocua biofilms. J. Drug Deliv. Sci. Technol. 2023 84 April 104443 10.1016/j.jddst.2023.104443
    [Google Scholar]
  45. Yammine J. Gharsallaoui A. Fadel A. Mechmechani S. Karam L. Ismail A. Chihib N-E. Enhanced antimicrobial, antibiofilm and ecotoxic activities of nanoencapsulated carvacrol and thymol as compared to their free counterparts. Food Control 2023 143 143 109317 10.1016/j.foodcont.2022.109317
    [Google Scholar]
  46. Jiang G. Mohideen A.P. Seshadri V.D. Rengarajan T. Biosynthesized tin oxide-sodium alginate-polyethylene glycol-carvacrol nanocomposite shows anticancer activity on esophagus squamous carcinoma cells. Process Biochem. 2022 121 July 403 412 10.1016/j.procbio.2022.07.005
    [Google Scholar]
  47. Charles A.P.R. Mu R. Jin T.Z. Li D. Pan Z. Rakshit S. Cui S.W. Wu Y. Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray. Carbohydr. Polym. 2022 298 September 120148 10.1016/j.carbpol.2022.120148 36241308
    [Google Scholar]
  48. Fuentes C. Fuentes A. Byrne H.J. Barat J.M. Ruiz M.J. In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol. Food Chem. Toxicol. 2021 2022 160 10.1016/j.fct.2021.112778 34958804
    [Google Scholar]
  49. Zheng H. Wang J. You F. Zhou M. Shi S. Fabrication, Characterization, and Antimicrobial Activity of Carvacrol-Loaded Zein Nanoparticles Using the pH-Driven Method. Int. J. Mol. Sci. 2022 23 16 9227 10.3390/ijms23169227 36012491
    [Google Scholar]
  50. Mondéjar-López M. López-Jimenez A.J. García Martínez J.C. Ahrazem O. Gómez-Gómez L. Niza E. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. Int. J. Biol. Macromol. 2022 206 January 288 297 10.1016/j.ijbiomac.2022.02.164 35240208
    [Google Scholar]
  51. Khaksarian M. Bahmani M. Taherikalani M. Ashrafi B. Rafieian-Kopaei M. Abbasi N. Biosynthesis of titanium dioxide nanoparticles using Hypericum perforatum and Origanum vulgare extracts and their main components, hypericin and carvacrol as promising antibacterial agents. J. Tradit. Chin. Med. 2022 42 2 167 175 10.19852/j.cnki.jtcm.2022.02.002 35473336
    [Google Scholar]
  52. Cui H. Lu J. Li C. Rashed M.M.A. Lin L. Antibacterial and physical effects of cationic starch nanofibers containing carvacrol@casein nanoparticles against Bacillus cereus in soy products. Int. J. Food Microbiol. 2022 364 364 109530 10.1016/j.ijfoodmicro.2022.109530 35026445
    [Google Scholar]
  53. Rao S. Sun M. Hu Y. Zheng X. Yang Z. Jiao X. ε-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: Preparation, characterization, and antibacterial activities. Lebensm. Wiss. Technol. 2021 146 January 111422 10.1016/j.lwt.2021.111422
    [Google Scholar]
  54. Niaz T. Sarkar A. Mackie A. Imran M. Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. Int. J. Biol. Macromol. 2021 169 171 182 10.1016/j.ijbiomac.2020.12.085 33340623
    [Google Scholar]
  55. Tian Z. Chinnathambi A. Awad Alahmadi T. Krishna Mohan S. Priya Veeraraghavan V. Kumar Jaganathan S. Anti-arthritic activity of Tin oxide-Chitosan-Polyethylene glycol carvacrol nanoparticles against Freund’s adjuvant induced arthritic rat model via the inhibition of cyclooxygenase‑2 and prostaglandin E2. Arab. J. Chem. 2021 14 9 103293 10.1016/j.arabjc.2021.103293
    [Google Scholar]
  56. Shinde P. Agraval H. Srivastav A.K. Yadav U.C.S. Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int. J. Pharm. 2020 588 August 119795 10.1016/j.ijpharm.2020.119795 32853712
    [Google Scholar]
  57. Rao S. Xu G. Lu X. Zhang R. Gao L. Wang Q. Yang Z. Jiao X. Characterization of ovalbumin-carvacrol inclusion complexes as delivery systems with antibacterial application. Food Hydrocoll. 2020 105 105 105753 10.1016/j.foodhyd.2020.105753
    [Google Scholar]
  58. Rao S. Xu G. Zeng H. Zheng X. Hu Q. Wang Q. Yang Z. Jiao X. Physicochemical and antibacterial properties of fabricated ovalbumin–carvacrol gel nanoparticles. Food Funct. 2020 11 6 5133 5141 10.1039/D0FO00755B 32432306
    [Google Scholar]
  59. Niza E. Božik M. Bravo I. Clemente-Casares P. Lara-Sanchez A. Juan A. Klouček P. Alonso-Moreno C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem. 2020 328 127131 10.1016/j.foodchem.2020.127131 32485586
    [Google Scholar]
  60. Mir M. Permana A.D. Ahmed N. Khan G.M. Rehman A. Donnelly R.F. Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study. Eur. J. Pharm. Biopharm. 2020 147 147 57 68 10.1016/j.ejpb.2019.12.008 31883906
    [Google Scholar]
  61. Gholijani N. Abolmaali S.S. Kalantar K. Ravanrooy M.H. Therapeutic effect of Carvacrol-loaded albumin nanoparticles on arthritic rats. Iran. J. Pharm. Res. 2020 19 1 312 320 10.22037/ijpr.2019.15494.13131 32922489
    [Google Scholar]
  62. Mir M. Permana A.D. Tekko I.A. McCarthy H.O. Ahmed N. Rehman A. Donnelly R.F. Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: A promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds. Int. J. Pharm. 2020 587 July 119643 10.1016/j.ijpharm.2020.119643 32702455
    [Google Scholar]
  63. He J. Huang S. Sun X. Han L. Chang C. Zhang W. Zhong Q. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: Preparation, characterization, and synergistic antimicrobial activity. Nanomaterials (Basel) 2019 9 8 1162 10.3390/nano9081162 31416170
    [Google Scholar]
  64. Galvão J.G. Santos R.L. Lira A.A.M. Kaminski R. Sarmento V.H. Severino P. Dolabella S.S. Scher R. Souto E.B. Nunes R.S. Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers. Appl. Sci. (Basel) 2020 10 18 6267 10.3390/app10186267
    [Google Scholar]
  65. Fonseca L.M. Cruxen C.E.S. Bruni G.P. Fiorentini Â.M. Zavareze E.R. Lim L.T. Dias A.R.G. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. Int. J. Biol. Macromol. 2019 139 1182 1190 10.1016/j.ijbiomac.2019.08.096 31415859
    [Google Scholar]
  66. Shakeri M. Razavi S.H. Shakeri S. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. Lebensm. Wiss. Technol. 2019 107 107 280 290 10.1016/j.lwt.2019.03.031
    [Google Scholar]
  67. Carvalho F.O. Silva É.R. Nunes P.S. Felipe F.A. Ramos K.P.P. Ferreira L.A.S. Lima V.N.B. Shanmugam S. Oliveira A.S. Guterres S.S. Camargo E.A. Cravalho Olivera T.V. de Albuquerque Júnior R.L.C. de Lucca Junior W. Quintans-Júnior L.J. Araújo A.A.S. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 3 445 455 10.1007/s00210‑019‑01731‑1 31655855
    [Google Scholar]
  68. Campos E.V.R. Proença P.L.F. Oliveira J.L. Pereira A.E.S. de Morais Ribeiro L.N. Fernandes F.O. Gonçalves K.C. Polanczyk R.A. Pasquoto-Stigliani T. Lima R. Melville C.C. Della Vechia J.F. Andrade D.J. Fraceto L.F. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 2018 8 1 7623 10.1038/s41598‑018‑26043‑x 29769620
    [Google Scholar]
  69. Sokolik C.G. Lellouche J.P. Hybrid-silica nanoparticles as a delivery system of the natural biocide carvacrol. RSC Advances 2018 8 64 36712 36721 10.1039/C8RA05898A 35558928
    [Google Scholar]
  70. Hussein J. El-Banna M. Mahmoud K.F. Morsy S. Abdel Latif Y. Medhat D. Refaat E. Farrag A.R. El-Daly S.M. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis. Biomed. Pharmacother. 2017 90 880 887 10.1016/j.biopha.2017.04.020 28437891
    [Google Scholar]
  71. Martínez-Hernández G.B. Amodio M.L. Colelli G. Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innov. Food Sci. Emerg. Technol. 2017 41 56 63 10.1016/j.ifset.2017.02.005
    [Google Scholar]
  72. Maryam K. Shakeri S. Kiani K. Preparation and in vitro investigation of antigastric cancer activities of carvacrol‐loaded human serum albumin nanoparticles. IET Nanobiotechnol. 2015 9 5 294 299 10.1049/iet‑nbt.2014.0040 26435283
    [Google Scholar]
  73. da Rosa C.G. de Oliveira Brisola Maciel M.V. de Carvalho S.M. de Melo A.P.Z. Jummes B. da Silva T. Martelli S.M. Villetti M.A. Bertoldi F.C. Barreto P.L.M. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf. A Physicochem. Eng. Asp. 2015 481 337 344 10.1016/j.colsurfa.2015.05.019
    [Google Scholar]
  74. Nazzaro F. Fratianni F. De Martino L. Coppola R. De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013 6 12 1451 1474 10.3390/ph6121451 24287491
    [Google Scholar]
  75. Churklam W. Chaturongakul S. Ngamwongsatit B. Aunpad R. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 2020 108 108 106864 10.1016/j.foodcont.2019.106864
    [Google Scholar]
  76. Prakash B. Kujur A. Yadav A. Kumar A. Singh P.P. Dubey N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018 89 1 11 10.1016/j.foodcont.2018.01.018
    [Google Scholar]
  77. Nóbrega R.O. Teixeira A.P.C. Oliveira W.A. Lima E.O. Lima I.O. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans. Pharm. Biol. 2016 54 11 2591 2596 10.3109/13880209.2016.1172319 27225838
    [Google Scholar]
  78. Narayanan A. Neera Mallesha Ramana K.V. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl. Biochem. Biotechnol. 2013 170 6 1379 1388 10.1007/s12010‑013‑0267‑2 23666640
    [Google Scholar]
  79. Lopresti F. Botta L. Scaffaro R. Bilello V. Settanni L. Gaglio R. Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics. Eur. Polym. J. 2019 121 July 109298 10.1016/j.eurpolymj.2019.109298
    [Google Scholar]
  80. Nakajima M. Antimicrobial Oil-in-Water Nanoemulsions: Synergistic Effect of Nisin and Carvacrol against Bacillus subtilis. J. Food Sci. Eng. 2016 6 2 63 74 10.17265/2159‑5828/2016.02.002
    [Google Scholar]
  81. Cacciatore F.A. Maders C. Alexandre B. Barreto Pinilla C.M. Brandelli A. da Silva Malheiros P. Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol. 2022 108 May 104116 10.1016/j.fm.2022.104116 36088121
    [Google Scholar]
  82. Deseta M.L. Sponton O.E. Erben M. Osella C.A. Frisón L.N. Fenoglio C. Piagentini A.M. Santiago L.G. Perez A.A. Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life. Food Res. Int. 2021 148 June 110597 10.1016/j.foodres.2021.110597 34507742
    [Google Scholar]
  83. Zheng H. Wang J. Zhang Y. Xv Q. Zeng Q. Wang J. Preparation and Characterization of Carvacrol-Loaded Caseinate/Zein-Composite Nanoparticles Using the Anti-Solvent Precipitation Method. Nanomaterials (Basel) 2022 12 13 2189 10.3390/nano12132189 35808025
    [Google Scholar]
  84. Preda V.G. Săndulescu O. Communication is the key: Biofilms, quorum sensing, formation and prevention. Discoveries (Craiova) 2019 7 3 e10 10.15190/d.2019.13 32309618
    [Google Scholar]
  85. Zhang D. Gan R.Y. Ge Y.Y. Yang Q.Q. Ge J. Li H.B. Corke H. Research progress on the antibacterial mechanisms of carvacrol: A mini review. Bioactive Compd. Health Dis. 2018 1 6 71 81 10.31989/bchd.v1i6.551
    [Google Scholar]
  86. Asadi S. Nayeri-Fasaei B. Zahraei-Salehi T. Yahya-Rayat R. Shams N. Sharifi A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol. 2023 23 1 55 10.1186/s12866‑023‑02797‑x 36864390
    [Google Scholar]
  87. Thomas R.E. Thomas B.C. Reducing biofilm infections in burn patients’ wounds and biofilms on surfaces in hospitals, medical facilities and medical equipment to improve burn care: A systematic review. Int. J. Environ. Res. Public Health 2021 18 24 13195 10.3390/ijerph182413195 34948803
    [Google Scholar]
  88. Zapién-Chavarría K.A. Plascencia-Terrazas A. Venegas-Ortega M.G. Varillas-Torres M. Rivera-Chavira B.E. Adame-Gallegos J.R. González-Rangel M.O. Nevárez-Moorillón G.V. Susceptibility of multidrug-resistant and biofilm-forming uropathogens to Mexican oregano essential oil. Antibiotics (Basel) 2019 8 4 186 10.3390/antibiotics8040186 31618938
    [Google Scholar]
  89. Wang J. Qin T. Chen K. Pan L. Xie J. Xi B. Antimicrobial and Antivirulence Activities of Carvacrol against Pathogenic Aeromonas hydrophila. Microorganisms 2022 10 11 2170 10.3390/microorganisms10112170 36363761
    [Google Scholar]
  90. Mittal R.P. Rana A. Jaitak V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr. Drug Targets 2019 20 6 605 624 10.2174/1389450119666181031122917 30378496
    [Google Scholar]
  91. Ashrafudoulla M. Rahaman Mizan M.F. Park S.H. Ha S-D. Antibiofilm activity of carvacrol against Listeria monocytogenes and Pseudomonas aeruginosa biofilm on MBEC™ biofilm device and polypropylene surface. Lebensm. Wiss. Technol. 2021 147 April 111575 10.1016/j.lwt.2021.111575
    [Google Scholar]
  92. Marinelli L. Di Stefano A. Cacciatore I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018 17 4 903 921 10.1007/s11101‑018‑9569‑x
    [Google Scholar]
  93. World Health Organization (WHO) Global cancer burden growing, amidst mounting need for services. 2023 Available From: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  94. World Health Organization (WHO) Cancer Key facts. 2017 Available From: https://www.who.int/es/news-room/fact-sheets/detail/cancer
  95. Li L. He L. Wu Y. Zhang Y. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Life Sci. 2021 266 118894 10.1016/j.lfs.2020.118894 33310045
    [Google Scholar]
  96. Liang W. Chou C. Lu T. Chi C. Tseng L. Pan C. Lin K. Kuo C. Jan C. The mechanism of carvacrol-evoked [Ca2+]i rises and non-Ca2+-triggered cell death in OC2 human oral cancer cells. Toxicology 2013 303 152 61
    [Google Scholar]
  97. Trindade G.G.G. Thrivikraman G. Menezes P.P. França C.M. Lima B.S. Carvalho Y.M.B.G. Souza E.P.B.S.S. Duarte M.C. Shanmugam S. Quintans-Júnior L.J. Bezerra D.P. Bertassoni L.E. Araújo A.A.S. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem. Toxicol. 2019 125 January 198 209 10.1016/j.fct.2019.01.003 30615955
    [Google Scholar]
  98. Sharma S.H. Thulasingam S. Nagarajan S. Terpenoids as anti-colon cancer agents – A comprehensive review on its mechanistic perspectives. Eur. J. Pharmacol. 2017 795 169 178 10.1016/j.ejphar.2016.12.008 27940056
    [Google Scholar]
  99. Balusamy S.R. Perumalsamy H. Huq M.A. Balasubramanian B. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomed. Pharmacother. 2018 108 August 1835 1844 10.1016/j.biopha.2018.10.028 30372889
    [Google Scholar]
  100. Andre F. Annals of Oncology 2018-2023. Ann. Oncol. 2023 34 12 1069 1070 10.1016/j.annonc.2023.08.019
    [Google Scholar]
  101. Romero-Castelán E. Rodríguez-Hernández A.I. Chavarría-Hernández N. López-Ortega M.A. López-Cuellar M. del R. Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications — A review. Int. J. Biol. Macromol. 2022 2023 233 10.1016/j.ijbiomac.2023.123418 36731700
    [Google Scholar]
  102. Medhat D. El-mezayen H.A. El-Naggar M.E. Farrag A.R. Abdelgawad M.E. Hussein J. Kamal M.H. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles. Mol. Biol. Rep. 2019 46 4 4517 4527 10.1007/s11033‑019‑04907‑3 31209743
    [Google Scholar]
  103. Manouchehrabadi M. Farhadi M. Azizi Z. Torkaman-Boutorabi A. Carvacrol Protects Against 6-Hydroxydopamine-Induced Neurotoxicity in In Vivo and In Vitro Models of Parkinson’s Disease. Neurotox. Res. 2020 37 1 156 170 10.1007/s12640‑019‑00088‑w 31364033
    [Google Scholar]
  104. Masafumi Y. Rosen B.P. Li J. Niu G. Arsinothricin as a multi-stage antimalarial. US Patent 202318219903A 2024
    [Google Scholar]
  105. Eley C.G.S. Re-oiled and hyper-oiled lecithin carrier vehicles. US Patent 11622556B2 2023
  106. Singh G. Pai R.S. Optimization (central composite design) and validation of HPLC method for investigation of emtricitabine loaded poly(lactic-co-glycolic acid) nanoparticles: In vitro drug release and in vivo pharmacokinetic studies. ScientificWorldJournal 2014 2014 1 12 10.1155/2014/583090 24672337
    [Google Scholar]
  107. Demokritou P. Vaze N.D. Pyrgiotakis G. Eleftheriadou M. Nanocarriers for the delivery of active ingredients. US Patent 11554190B2 2023
  108. Shraibom N. Steinberg E. Jaggi M. Singh A.T. Verma R. Madaan A. Herbal nanoformulations for treating psoriasis and other skin conditions. US Patent 11344598B2 2022
  109. Athanassiadis B. Walsh L.J. Alkaline compositions and their dental and medical use. EU Patent 2736519A1 2022
  110. Preslar A.T. Mouat A.R. Compositions for controlled release of active ingredients and methods of making same. US Patent 11278023B2 2022
  111. Kyriakou C.S. Napoleontos B.C. Asimaki R.A.K. Marianthi K. Dimitriou M.A. Konstantinou R.P. Achillea P.C. Michail M.T. Georgiou Z.P. Metaxa K.N. Kyriakou C.S. Napoleontos B.C. Konstantinou R.A. Asimaki K.M. New hydrogels for the development of sterile contact lenses. GK Patent 1010095B 2021
    [Google Scholar]
  112. Bau A.B. Mañez R.M. Kloucek P. Bozik M. Mesoporous silica materials for the controlled release of active substances and their applications. EU Patent 3544594A1 2021
  113. Baviera J.M.B. Martínez M.D.M. Mañez R.M. Esteve E.P. Rico M.R. Galarza F.S. Antimicrobial, insecticidal and acaricidal system. EU Patent 3326971A1 2021
  114. Sui Z. Wenwen S. Hua G. Liang W. And L.H. Jun D. Preparation method of essential oil microcapsule. CN Patent 113667541 2021
  115. Gabriel D.W. Zhang S. Use of aldehydes formulated with nanoparticles and/or nanoemulsions to enhance disease resistance of plants to liberibacters. US Patent 10772326B2 2020
  116. Shengqi R. Yisheng Y. Zhenquan Y. Ming Y. Yuhong L. Caochen J. Feng H. Lu L. X. Ovalbumin-carvacrol nanoparticle and preparation method and antibacterial application thereof. CN Patent 116762850A 2020
  117. Lu Y. Du J. Li J. Liu Y. Therapeutic hyperbranched polyglycerol encapsulated biomolecules. US Patent 10668161B2 2020
  118. Sarkas H.W. Hooper A.R. Hoffman N.H. Coated powders having high photostability. US Patent 10590278B2 2020
  119. Rotello V.M. Landis R.F. Gupta A. Lee Y. Stabilized polymeric nanocapsules, dispersions comprising the nanocapsules, and methods for the treatment of bacterial biofilms. US Patent 10493039B2 2019
  120. Rotello V.M. Crosslinked Particles, Composition Comprising the Crosslinked Particles, Method for the Manufacture Thereof, and Method of Treating an Infection. World Wide 2019 2019 118444
    [Google Scholar]
  121. Duncan B. Li X. Rotello V. M. Nanoparticle-stabilized microcapsules, dispersions comprising nanoparticle-stabilized microcapsules, and method for the treatment of bacterial biofilms. US Patent 10272126B2 2019
  122. Gaillard P.J. Glutathione-based drug delivery system. EU Patent 2398500B1 2019
  123. Topolkaraev V.A. Scholl N.T. McEneany R.J. Eby T.A. Delivery system for active agents. US Patent 10195157B2 2019
  124. He J. Shungshuang H. Lijuan H. Zhang W. Carvacrol solid lipid nanoparticle dispersion liquid with bacteriostatic activity, preparation method and application thereof. CN Patent 1109122684A 2019
/content/journals/cnano/10.2174/0115734137326553240917142721
Loading
/content/journals/cnano/10.2174/0115734137326553240917142721
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: antimicrobial ; anti-inflammatory ; nanoencapsulation ; Carvacrol ; anticancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test