Skip to content
2000
image of A Systematic Review on the Scope and Applications of Nanomaterials in the Plant Systems: Current and Prospects

Abstract

Nanoparticles are essential tools used in manipulating plants, and there is a wide variety of nanoparticles, each with its own uses for different plants. Plants undergo minuscule gene manipulations that give them advantages and endurance. When particles are reduced to the nanometer scale, they exhibit a high surface area to volume ratio, resulting in unique properties that allow for systematic applications in engineering, biomedical, agricultural, and related fields. Nanomaterials can be created through bottom-up or top-down procedures using physical, chemical, and organic synthesis methods. This review study explores the use of different nano materials in the agricultural sector and the impact of silica nanoparticles, metal oxide, and metal nanoparticles on plant metabolic processes. Additionally, the impacts of nanoparticles on microbes, bacteria, and other pathogens are also being analyzed.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137328209240930134458
2024-10-14
2024-12-26
Loading full text...

Full text loading...

References

  1. Sheteiwy M.S. Shaghaleh H. Hamoud Y.A. Holford P. Shao H. Qi W. Hashmi M.Z. Wu T. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environ. Sci. Pollut. Res. Int. 2021 28 28 36942 36966 10.1007/s11356‑021‑14542‑w 34043175
    [Google Scholar]
  2. Chavan S. Nadanathangam V. Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil. Agronomy (Basel) 2019 9 3 140 10.3390/agronomy9030140
    [Google Scholar]
  3. Wang T. Liu Y. Wang M. Fan Q. Tian H. Qiao X. Li Y. Applications of UAS in Crop Biomass Monitoring: A Review. Front. Plant Sci. 2021 12 616689 10.3389/fpls.2021.616689 33897719
    [Google Scholar]
  4. Wimberly M.C. de Beurs K.M. Loboda T.V. Pan W.K. Satellite Observations and Malaria: New Opportunities for Research and Applications. Trends Parasitol. 2021 37 6 525 537 10.1016/j.pt.2021.03.003 33775559
    [Google Scholar]
  5. Shang Y. Hasan M.K. Ahammed G.J. Li M. Yin H. Zhou J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019 24 14 2558 10.3390/molecules24142558 31337070
    [Google Scholar]
  6. Neme K. Nafady A. Uddin S. Tola Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 2021 7 12 e08539 10.1016/j.heliyon.2021.e08539 34934845
    [Google Scholar]
  7. Kutawa A.B. Ahmad K. Ali A. Hussein M.Z. Abdul Wahab M.A. Adamu A. Ismaila A.A. Gunasena M.T. Rahman M.Z. Hossain M.I. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. Biology (Basel) 2021 10 9 881 10.3390/biology10090881 34571758
    [Google Scholar]
  8. Yousaf M. Li J. Lu J. Ren T. Cong R. Fahad S. Li X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017 7 1 1270 10.1038/s41598‑017‑01412‑0 28455510
    [Google Scholar]
  9. Qian Y. Qin C. Chen M. Lin S. Nanotechnology in soil remediation − applications vs. implications. Ecotoxicol. Environ. Saf. 2020 201 110815 10.1016/j.ecoenv.2020.110815 32559688
    [Google Scholar]
  10. Prasad R. Bhattacharyya A. Nguyen Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017 8 1014 10.3389/fmicb.2017.01014 28676790
    [Google Scholar]
  11. Sekhon B. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 2014 7 31 53 10.2147/NSA.S39406 24966671
    [Google Scholar]
  12. Ur Rahim H. Qaswar M. Uddin M. Giannini C. Herrera M.L. Rea G. Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. Nanomaterials (Basel) 2021 11 8 2068 10.3390/nano11082068 34443899
    [Google Scholar]
  13. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  14. Mukhopadhyay S.S. Nanotechnology in agriculture: prospects and constraints. Nanotechnol. Sci. Appl. 2014 7 63 71 10.2147/NSA.S39409 25187699
    [Google Scholar]
  15. He X. Deng H. Hwang H.M. The current application of nanotechnology in food and agriculture. Yao Wu Shi Pin Fen Xi 2019 27 1 1 21 30648562
    [Google Scholar]
  16. Singh H. Sharma A. Bhardwaj S.K. Arya S.K. Bhardwaj N. Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 2021 23 2 213 239 10.1039/D0EM00404A 33447834
    [Google Scholar]
  17. Choudhary S. Thakur S. Bhardwaj P. Molecular basis of transitivity in plant RNA silencing. Mol. Biol. Rep. 2019 46 4 4645 4660 10.1007/s11033‑019‑04866‑9 31098805
    [Google Scholar]
  18. Zhang H. Zhang H. Demirer G.S. González-Grandío E. Fan C. Landry M.P. Engineering DNA nanostructures for siRNA delivery in plants. Nat. Protoc. 2020 15 9 3064 3087 10.1038/s41596‑020‑0370‑0 32807907
    [Google Scholar]
  19. Allan J. Belz S. Hoeveler A. Hugas M. Okuda H. Patri A. Rauscher H. Silva P. Slikker W. Sokull-Kluettgen. B Regul Toxicol Pharmacol. 2021 122 104885 10.1016/j.yrtph.2021.104885
    [Google Scholar]
  20. Fortunati E. Mazzaglia A. Balestra G.M. Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches. J. Sci. Food Agric. 2019 99 3 986 1000 10.1002/jsfa.9341 30191564
    [Google Scholar]
  21. Ali S.S. Al-Tohamy R. Koutra E. Moawad M.S. Kornaros M. Mustafa A.M. Mahmoud Y.A.G. Badr A. Osman M.E.H. Elsamahy T. Jiao H. Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Sci. Total Environ. 2021 792 148359 10.1016/j.scitotenv.2021.148359 34147795
    [Google Scholar]
  22. Kim D.Y. Kadam A. Shinde S. Saratale R.G. Patra J. Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J. Sci. Food Agric. 2018 98 3 849 864 10.1002/jsfa.8749 29065236
    [Google Scholar]
  23. Alabdallah N.M. Hasan M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci. 2021 28 10 5631 5639 10.1016/j.sjbs.2021.05.081 34588874
    [Google Scholar]
  24. Chen J. Wu L. Lu M. Lu S. Li Z. Ding W. Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens. Front. Microbiol. 2020 11 365 10.3389/fmicb.2020.00365 32226420
    [Google Scholar]
  25. Pei A. Xie R. Zhang Y. Feng Y. Wang W. Zhang S. Huang Z. Zhu L. Chai G. Yang Z. Gao Q. Ye H. Shang C. Chen B.H. Guo Z. Effective electronic tuning of Pt single atoms via heterogeneous atomic coordination of (Co,Ni)(OH) 2 for efficient hydrogen evolution. Energy Environ. Sci. 2023 16 3 1035 1048 10.1039/D2EE02785B
    [Google Scholar]
  26. Sahayaraj K. Rajesh S. Rathi J.A.M. Kumar V. Green preparation of seaweed‐based silver nano‐liquid for cotton pathogenic fungi management. IET Nanobiotechnol. 2019 13 2 219 225 10.1049/iet‑nbt.2018.5007 31051454
    [Google Scholar]
  27. Pariona N. Mtz-Enriquez A.I. Sánchez-Rangel D. Carrión G. Paraguay-Delgado F. Rosas-Saito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Advances 2019 9 33 18835 18843 10.1039/C9RA03110C 35516870
    [Google Scholar]
  28. Chindera K. Mahato M. Sharma A. Horsley H. Kloc-Muniak K. Kamaruzzaman N. Kumar S. McFarlane A. Stach J. Bentin T. Clin. Microbiol. Rev. 2016 6 23121
    [Google Scholar]
  29. Ahmed A. Rushworth J.V. Hirst N.A. Millner P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 2014 27 3 631 646 10.1128/CMR.00120‑13 24982325
    [Google Scholar]
  30. Tripathi D.K. Singh S. Singh V.P. Prasad S.M. Dubey N.K. Chauhan D.K. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol. Biochem. 2017 110 70 81 10.1016/j.plaphy.2016.06.026 27470120
    [Google Scholar]
  31. Ferrari E. Barbero F. Busquets-Fité M. Franz-Wachtel M. Köhler H.R. Puntes V. Kemmerling B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. Nanomaterials (Basel) 2021 11 12 3161 10.3390/nano11123161 34947510
    [Google Scholar]
  32. Siddiqui M.H. Al-Whaibi M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 2014 21 1 13 17 10.1016/j.sjbs.2013.04.005 24596495
    [Google Scholar]
  33. Zhang S. Pei A. Li G. Zhu L. Li G. Wu F. Lin S. Chen W. Chen B.H. Luque R. Pd/CuO–Ni(OH) 2 /C as a highly efficient and stable catalyst for the electrocatalytic oxidation of ethanol. Green Chem. 2022 24 6 2438 2450 10.1039/D1GC04799J
    [Google Scholar]
  34. Patel D.K. Kim H.B. Dutta S.D. Ganguly K. Lim K.T. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials (Basel) 2020 13 7 1679 10.3390/ma13071679 32260227
    [Google Scholar]
  35. de Sousa Victor R. Marcelo da Cunha Santos A. Viana de Sousa B. de Araújo Neves G. Navarro de Lima Santana L. Rodrigues Menezes R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials (Basel) 2020 13 21 4995 10.3390/ma13214995 33171898
    [Google Scholar]
  36. Uner M. Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine 2007 2 3 289 300 18019829
    [Google Scholar]
  37. Meena M. Zehra A. Swapnil P. Harish Marwal A. Yadav G. Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem. 2021 9 613343 10.3389/fchem.2021.613343 34113600
    [Google Scholar]
  38. Ali M.A. Ahmed T. Wu W. Hossain A. Hafeez R. Islam Masum M.M. Wang Y. An Q. Sun G. Li B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomaterials (Basel) 2020 10 6 1146 10.3390/nano10061146 32545239
    [Google Scholar]
  39. Worrall E. Hamid A. Mody K. Mitter N. Pappu H. Nanotechnology for Plant Disease Management. Agronomy (Basel) 2018 8 12 285 10.3390/agronomy8120285
    [Google Scholar]
  40. Pei A. Li G. Zhu L. Huang Z. Ye J. Chang Y.C. Osman S.M. Pao C.W. Gao Q. Chen B.H. Luque R. Nickel Hydroxide‐Supported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. Adv. Funct. Mater. 2022 32 51 2208587 10.1002/adfm.202208587
    [Google Scholar]
  41. Khiyami M.A. Almoammar H. Awad Y.M. Alghuthaymi M.A. Abd-Elsalam K.A. Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol. Biotechnol. Equip. 2014 28 5 775 785 10.1080/13102818.2014.960739 26740775
    [Google Scholar]
  42. Mubeen B. Ansar A.N. Rasool R. Ullah I. Imam S.S. Alshehri S. Ghoneim M.M. Alzarea S.I. Nadeem M.S. Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021 10 12 1473 10.3390/antibiotics10121473 34943685
    [Google Scholar]
  43. Zhao J. Ren W. Dai Y. Liu L. Wang Z. Yu X. Zhang J. Wang X. Xing B. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses. Environ. Sci. Technol. 2017 51 13 7686 7695 10.1021/acs.est.7b01602 28586199
    [Google Scholar]
  44. Nandini B. Mawale K.S. Giridhar P. Nanomaterials in Agriculture for Plant Health and Food Safety: A Comprehensive Review on the Current State of Agro-nanoscience. 3 Biotech. 2023 13 3 73
    [Google Scholar]
  45. Sarraf M. Vishwakarma K. Kumar V. Arif N. Das S. Johnson R. Janeeshma E. Puthur J.T. Aliniaeifard S. Chauhan D.K. Fujita M. Hasanuzzaman M. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants 2022 11 3 316 10.3390/plants11030316 35161297
    [Google Scholar]
  46. Juzenas P. Chen W. Sun Y.P. Coelho M.A.N. Generalov R. Generalova N. Christensen I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008 60 15 1600 1614 10.1016/j.addr.2008.08.004 18840487
    [Google Scholar]
  47. Plant-based Synthesis of Zinc Oxide Nanoparticles (zno-nps) Using Aqueous Leaf Extract of Aquilegia Pubiflora: Their Antiproliferative Activity Against Hepg2 Cells Inducing Reactive Oxygen Species and Other in Vitro Properties. Oxid. Med. Cell. Longev. 2021 2021 4786227
    [Google Scholar]
  48. Ferdous Z. Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020 21 7 2375 10.3390/ijms21072375 32235542
    [Google Scholar]
  49. Khan F. Pandey P. Upadhyay T.K. Applications of Nanotechnology-Based Agrochemicals in Food Security and Sustainable Agriculture: An Overview. Agriculture 2022 12 10 1672 10.3390/agriculture12101672
    [Google Scholar]
  50. Assis G.C. Antonelli R. Dantas A.O.S. Teixeira A.C.S.C. Microplastics as hazardous pollutants: Occurrence, effects, removal and mitigation by using plastic waste as adsorbents and supports for photocatalysts. J. Environ. Chem. Eng. 2023 11 6 111107 10.1016/j.jece.2023.111107
    [Google Scholar]
  51. Ray P.C. Yu H. Fu P.P. Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2009 27 1 1 35 10.1080/10590500802708267 19204862
    [Google Scholar]
  52. Król A. Pomastowski P. Rafińska K. Railean-Plugaru V. Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017 249 37 52 10.1016/j.cis.2017.07.033 28923702
    [Google Scholar]
  53. Sembada A.A. Lenggoro I.W. Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials (Basel) 2024 14 2 131 10.3390/nano14020131 38251096
    [Google Scholar]
  54. Milewska-Hendel A. Zubko M. Stróż D. Kurczyńska E.U. Effect of Nanoparticles Surface Charge on the Arabidopsis thaliana (L.) Roots Development and Their Movement into the Root Cells and Protoplasts. Int. J. Mol. Sci. 2019 20 7 1650 10.3390/ijms20071650 30987084
    [Google Scholar]
  55. Wojcieszek J. Jiménez-Lamana J. Ruzik L. Szpunar J. Jarosz M. To-Do and Not-To-Do in Model Studies of the Uptake, Fate and Metabolism of Metal-Containing Nanoparticles in Plants. Nanomaterials (Basel) 2020 10 8 1480 10.3390/nano10081480 32731603
    [Google Scholar]
  56. Chen H. Qiu X. Xia T. Li Q. Wen Z. Huang B. Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023 9 3 207 10.3390/gels9030207 36975656
    [Google Scholar]
  57. Tripathi D.K. Singh V.P. Prasad S.M. Chauhan D.K. Dubey N.K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 2015 96 189 198 10.1016/j.plaphy.2015.07.026 26298805
    [Google Scholar]
  58. Yan A. Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019 20 5 1003 10.3390/ijms20051003 30813508
    [Google Scholar]
  59. Qing Y. Cheng L. Li R. Liu G. Zhang Y. Tang X. Wang J. Liu H. Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine 2018 13 3311 3327 10.2147/IJN.S165125 29892194
    [Google Scholar]
  60. Kim S.W. Jung J.H. Lamsal K. Kim Y.S. Min J.S. Lee Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology 2012 40 1 53 58 10.5941/MYCO.2012.40.1.053 22783135
    [Google Scholar]
  61. Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014 2014 1 31 10.1155/2014/360438 24999379
    [Google Scholar]
  62. Xiong T. Zhang S. Kang Z. Zhang T. Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce (Lactuca sativa L.) to Copper Oxide Nanoparticles—Insights into the Phytotoxicity Mechanisms. Int. J. Mol. Sci. 2021 22 7 3688 10.3390/ijms22073688 33916236
    [Google Scholar]
  63. Longano D. Ditaranto N. Sabbatini L. Torsi L. Cioffi N. Synthesis and Antimicrobial Activity of Copper Nanomaterials. Nano-Antimicrobials 2011 85 117
    [Google Scholar]
  64. Adams J. Wright M. Wagner H. Valiente J. Britt D. Anderson A. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol. Biochem. 2017 110 108 117 10.1016/j.plaphy.2016.08.005 27544889
    [Google Scholar]
  65. Verma V. Al-Dossari M. Singh J. Rawat M. Kordy M.G.M. Shaban M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers (Basel) 2022 14 7 1444 10.3390/polym14071444 35406317
    [Google Scholar]
  66. Chakhtouna H. Benzeid H. Zari N. Qaiss A. Bouhfid R. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. Int. 2021 28 33 44638 44666 10.1007/s11356‑021‑14996‑y 34212334
    [Google Scholar]
  67. Lyu S. Wei X. Chen J. Wang C. Wang X. Pan D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017 8 597 10.3389/fpls.2017.00597 28487709
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137328209240930134458
Loading
/content/journals/cnano/10.2174/0115734137328209240930134458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test