Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Carbon quantum dot synthesis, characterization, and applications have drawn a lot of attention lately. The most effective carbon precursors for creating carbon dots with intriguing chemical and physical characteristics are found in natural materials.

Objectives

In this study, we introduced a new approach using a carbon dot system that possesses both absorption and emission capabilities, allowing for the development of a fluorometric assay to detect Fe3+ metal ions.

Methods

Hydrothermally, the Damask rose Carbon Quantum Dots (DRCQDs) were synthesized using Damask rose flower petals and various characterisations were performed, such as UV-Vis, FE-SEM, EDS, and Elemental mapping. The fluorescence intensity of carbon quantum dots (CQDs) varies depending on the particular metal ion present in the medium, and the blue fluorescence was selectively quenched.

Results

For the purpose of detecting Fe3+ ions at an excitation of 330 nm, CQDs were employed, which produced an extensive emission spectrum between 280 and 400 nm by varying the excitation wavelengths. More than other heavy metals, Fe3+ ions were observed to have a stronger fluorescence quenching effect for the CQDs. According to spectroscopic measurements, the generated CQDs have a detection limit of 1.11 μM and could determine Fe3+ ions in the range of concentrations from 0-80 μM.

Conclusion

This new fluorescent CQD technology offers a promising method for the quick and effective identification of Fe3+ ions, particularly in real-world samples.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137300899240509100717
2024-05-23
2025-04-02
Loading full text...

Full text loading...

References

  1. FuF. WangQ. Removal of heavy metal ions from wastewaters: A review.J. Environ. Manage.201192340741810.1016/j.jenvman.2010.11.011 21138785
    [Google Scholar]
  2. AhmedA. SinghA. PadhaB. SundramoorthyA.K. TomarA. AryaS. UV–vis spectroscopic method for detection and removal of heavy metal ions in water using Ag doped ZnO nanoparticles.Chemosphere2022303Pt 313520810.1016/j.chemosphere.2022.135208 35667500
    [Google Scholar]
  3. AtchudanR. PerumalS. EdisonT.N.J.I. SundramoorthyA.K. VinodhR. SangarajuS. KishoreS.C. LeeY.R. Natural nitrogen-doped carbon dots obtained from hydrothermal carbonization of Chebulic Myrobalan and their sensing ability toward heavy metal ions.Sensors202323278710.3390/s23020787 36679584
    [Google Scholar]
  4. WangS. ShiX. Molecular mechanisms of metal toxicity and carcinogenesis.Mol. Cell. Biochem.20012221/23910.1023/A:1017918013293 11678608
    [Google Scholar]
  5. BeyersmannD. HartwigA. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms.Arch. Toxicol.200882849351210.1007/s00204‑008‑0313‑y 18496671
    [Google Scholar]
  6. MalczewskaB. MalczewskaB. CzabanS. JaweckiB. Occurrence of iron, manganese, and selected trace elements in water from household wells exposed to the impact of a mining area.J. Elem.201823413191329
    [Google Scholar]
  7. MilicS. MikolasevicI. OrlicL. DevcicE. Starcevic-CizmarevicN. StimacD. KapovicM. RisticS. The role of iron and iron overload in chronic liver disease.Med. Sci. Monit.2016222144215110.12659/MSM.896494 27332079
    [Google Scholar]
  8. SundramoorthyA.K. PremkumarB.S. GunasekaranS. Reduced graphene oxide-poly(3, 4-ethylenedioxythiophene) polystyrenesulfonate based dual-selective sensor for iron in different oxidation states.ACS Sens.20161215115710.1021/acssensors.5b00172
    [Google Scholar]
  9. SardansJ. MontesF. PeñuelasJ. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry.Spectrochim. Acta B At. Spectrosc.20106529711210.1016/j.sab.2009.11.009
    [Google Scholar]
  10. Kumar MauryaV. Pratap SinghR. Bahadur PrasadL. Comparative evaluation of trace heavy metal ions in water sample using complexes of dithioligands by flame atomic absorption spectrometry.Orient. J. Chem.201834110010910.13005/ojc/340111
    [Google Scholar]
  11. FernándezV. WinkelmannG. The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E.Biometals2005181536210.1007/s10534‑004‑5773‑9 15865410
    [Google Scholar]
  12. FakayodeS.O. WalgamaC. NarcisseV.E. GrantC. Electrochemical and colorimetric nanosensors for detection of heavy metal ions: A review.Sensors20232322908010.3390/s23229080 38005468
    [Google Scholar]
  13. IpeaiyedaA.R. AyoadeA.R. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline.Appl. Water Sci.2017784449445910.1007/s13201‑017‑0590‑9
    [Google Scholar]
  14. AlorabiA.Q. AbdelbasetM. ZabinS.A. Colorimetric detection of multiple metal ions using Schiff base 1-(2-thiophenylimino)-4-(N-dimethyl)benzene.Chemosensors201981110.3390/chemosensors8010001
    [Google Scholar]
  15. MahmoudM.E. FekryN.A. El-LatifM.M.A. Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals.Chem. Eng. J.201630467969110.1016/j.cej.2016.06.110
    [Google Scholar]
  16. LiZ. ZhouQ. SathishkumarP. PengL. WangQ. GuF.L. Ratiometric fluorometric detection of Cu2+ through a hybrid nanoprobe composed of N-doped CQDs and l-cysteine-capped CdSe/ZnS QDs.J. Lumin.202325711969411969410.1016/j.jlumin.2023.119694
    [Google Scholar]
  17. ShenJ. ShangS. ChenX. WangD. CaiY. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging.Mater. Sci. Eng. C20177685686410.1016/j.msec.2017.03.178 28482600
    [Google Scholar]
  18. LinL. LuoY. TsaiP. WangJ. ChenX. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications.Trends Analyt. Chem.20181038710110.1016/j.trac.2018.03.015
    [Google Scholar]
  19. MageshV. SundramoorthyA.K. GanapathyD. Recent advances on synthesis and potential applications of carbon quantum dots.Front. Mater.2022990683810.3389/fmats.2022.906838
    [Google Scholar]
  20. ZhangY. ChengS. WangX. WangY. ZhangY. Fluorescence ‘off–on’ probe for lead (II) detection based on Atractylodes III CQDs and bioimaging.Luminescence202237576677610.1002/bio.4219 35218588
    [Google Scholar]
  21. WangM. YinH. ZhouY. MengX. WaterhouseG.I.N. AiS. A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs.Chem. Eng. J.201936535135710.1016/j.cej.2019.02.067
    [Google Scholar]
  22. SundramoorthyA.K. Senthil KumarM.C. RamyaT. AtchudanR. AryaS. Biocompatible heteroatom doped carbon dots for cancer cell imaging and analysis.Oral Oncology Reports2023710008910008910.1016/j.oor.2023.100089
    [Google Scholar]
  23. Fattahi NafchiR. AhmadiR. HeydariM. RahimipourM.R. MolaeiM.J. UnsworthL. In vitro study: Synthesis and evaluation of Fe3O4/CQD magnetic/fluorescent nanocomposites for targeted drug delivery, MRI, and cancer cell labeling applications.Langmuir202238123804381610.1021/acs.langmuir.1c03458 35294836
    [Google Scholar]
  24. PradhanS. DalmasesM. BaspinarA-B. KonstantatosG. Highly efficient, bright and stable colloidal quantum dot short-wave infrared light emitting diodes.Adv. Funct. Mater.202130392004445
    [Google Scholar]
  25. ŠafrankoS. GomanD. StankovićA. Medvidović-KosanovićM. MoslavacT. JerkovićI. JokićS. An overview of the recent developments in carbon quantum dots—promising nanomaterials for metal ion detection and (bio)molecule sensing.Chemosensors20219613810.3390/chemosensors9060138
    [Google Scholar]
  26. PhangS.J. TanL.L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications.Catal. Sci. Technol.20199215882590510.1039/C9CY01452G
    [Google Scholar]
  27. QinL. SunQ. LaiC. LiuS. QinX. ChenW. FuY. ZhouX. XuF. MaD. Sulfonic acid metal-organic frameworks derived iron-doped carbon as novel heterogeneous electro-Fenton catalysts for the degradation of tetracycline: Performance and mechanism investigation.Chem. Eng. J.202347414572214572210.1016/j.cej.2023.145722
    [Google Scholar]
  28. ZhengX.T. AnanthanarayananA. LuoK.Q. ChenP. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications.Small201511141620163610.1002/smll.201402648 25521301
    [Google Scholar]
  29. WangY. HuA. Carbon quantum dots: Synthesis, properties and applications.J. Mater. Chem.201423469216939
    [Google Scholar]
  30. MuX. WuM. ZhangB. LiuX. XuS. HuangY. WangX. SongD. MaP. SunY. A sensitive “off-on” carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect.Talanta202122112146310.1016/j.talanta.2020.121463 33076083
    [Google Scholar]
  31. CuiL. RenX. SunM. LiuH. XiaL. Carbon dots: Synthesis, properties and applications.Nanomaterials20211112341910.3390/nano11123419 34947768
    [Google Scholar]
  32. DeviN.R. KumarT.H.V. SundramoorthyA.K. Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter.J. Electrochem. Soc.201816512G3112G311910.1149/2.0191812jes
    [Google Scholar]
  33. XiaC. ZhuS. FengT. YangM. YangB. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots.Adv. Sci.2019623190131610.1002/advs.201901316 31832313
    [Google Scholar]
  34. DuaS. KumarP. PaniB. KaurA. KhannaM. BhattG. Stability of carbon quantum dots: A critical review.RSC Advances20231320138451386110.1039/D2RA07180K 37181523
    [Google Scholar]
  35. RasinP. ManakkadanV. Vadakkedathu PalakkeezhillamV.N. HaribabuJ. EcheverriaC. SreekanthA. Simple fluorescence sensing approach for selective detection of Fe3+ ions: Live-cell imaging and logic gate functioning.ACS Omega2022737332483325710.1021/acsomega.2c03718 36157778
    [Google Scholar]
  36. LiuW. DiaoH. ChangH. WangH. LiT. WeiW. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging.Sens. Actuators B Chem.201724119019810.1016/j.snb.2016.10.068
    [Google Scholar]
  37. NagarajM RamalingamS MuruganC AldawoodS JinJ-O Choi, I Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ Res.20222012Pt B113273
    [Google Scholar]
  38. MuruganN. PrakashM. JayakumarM. SundaramurthyA. SundramoorthyA.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+.Appl. Surf. Sci.201947646848010.1016/j.apsusc.2019.01.090
    [Google Scholar]
  39. MuruganN. SundramoorthyA.K. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions.New J. Chem.20184216132971330710.1039/C8NJ01894D
    [Google Scholar]
  40. AtchudanR. GangadaranP. PerumalS. EdisonT.N.J.I. SundramoorthyA.K. RajendranR.L. AhnB-C. LeeY.R. Green synthesis of multicolor emissive nitrogen-doped carbon dots for bioimaging of human cancer cells.J. Cluster Sci.20233431583159410.1007/s10876‑022‑02337‑z
    [Google Scholar]
  41. LiuY. LiuY. ParkS.J. ZhangY. KimT. ChaeS. ParkM. KimH-Y. One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe 3+ detection.J. Mater. Chem. A Mater. Energy Sustain.2015334177471775410.1039/C5TA05189D
    [Google Scholar]
  42. AslandaşA.M. BalcıN. ArıkM. ŞakiroğluH. OnganerY. MeralK. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection.Appl. Surf. Sci.201535674775210.1016/j.apsusc.2015.08.147
    [Google Scholar]
  43. AhnJ. SongY. KwonJ.E. WooJ. KimH. Characterization of food waste-driven carbon dot focusing on chemical structural, electron relaxation behavior and Fe3+ selective sensing.Data Brief20192510403810.1016/j.dib.2019.104038 31194181
    [Google Scholar]
  44. XieZ. SunX. JiaoJ. XinX. Ionic liquid-functionalized carbon quantum dots as fluorescent probes for sensitive and selective detection of iron ion and ascorbic acid.Colloids Surf. A Physicochem. Eng. Asp.2017529384410.1016/j.colsurfa.2017.05.069
    [Google Scholar]
  45. AtchudanR. EdisonT.N.J.I. ChakradharD. PerumalS. ShimJ.J. LeeY.R. Facile green synthesis of nitrogen-doped carbon dots using chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications.Sens. Actuators B Chem.2017246497509
    [Google Scholar]
  46. ChandraS. LahaD. PramanikA. Ray ChowdhuriA. KarmakarP. SahuS.K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe 3+ ions in cancer cells.Luminescence2016311818710.1002/bio.2927 25964146
    [Google Scholar]
  47. DingH. WeiJ.S. XiongH.M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence.Nanoscale2014622138171382310.1039/C4NR04267K 25297983
    [Google Scholar]
  48. ZulfajriM. GeddaG. ChangC.J. ChangY.P. HuangG.G. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution.ACS Omega2019413153821539210.1021/acsomega.9b01333 31572837
    [Google Scholar]
  49. HuangG. ChenX. WangC. ZhengH. HuangZ. ChenD. XieH. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications.RSC Advances2017775478404784710.1039/C7RA09002A
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137300899240509100717
Loading
/content/journals/cnano/10.2174/0115734137300899240509100717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test