Skip to content
2000
image of Topical Application of Melatonin in a Grapeseed Oil-based Microemulsion Accelerated Wound Healing in Rat Models

Abstract

Objective

Melatonin has been associated with accelerated tissue regeneration and grapeseed oil has abundant unsaturated fatty acids, particularly linoleic acid that makes it a strong antioxidant, having the potential to promote wound healing by enhancing the presence of free radicals at the wound site. The study is aimed to evaluate the potential of a microemulsion gel using grapeseed oil as the organic phase and melatonin encapsulated in the vesicles to exhibit synergistic wound healing in Swiss albino rats.

Materials and Method

Microemulsion containing grapeseed oil encapsulating melatonin was developed using the water-titration method. The surfactant and co-surfactant ratio (S) were fixed at 1:1. A pseudo-ternary diagram was used to determine the microemulsion zone and the developed microemulsion was further incorporated in carbopol 934P gel. The formulations were evaluated for their physicochemical properties and cytotoxicity assay. The optimized formulation was topically applied to cutaneous wounds of Swiss albino rat models. 30 Swiss albino rats were divided into five groups of 6 animals each: (i) Negative control group, (ii) Standard marketed formulation treated group, (iii) Optimized microemulsion containing Grapeseed oil and melatonin treated group, (iv) Grapeseed oil treated group and (v) Melatonin treated group. All the rats in each group were topically applied with the desired formulations daily for up to 14 days.

Results

The treatment with a formulation comprising 10.18% Grapeseed oil, 24.88% water, and 64.94% S exhibited the highest entrapment efficiency of 86.65 ± 1.88% with an enhanced drug release of up to 83.02 ± 1.09%, also demonstrating first-order release kinetics. Furthermore, it did not inhibit L929 mouse fibroblast cell proliferation up to 500 μg/mL and promoted wound closure prior to other groups. Additionally, increased tissue maturation with higher collagen deposition was mostly seen by day 7. Thus demonstrating it is suitable for dermal application and sustained release of melatonin. The wound healing study and histological investigations on rat models demonstrated comparable results as observed in the marketed formulation of melatonin.

Conclusion

The results showed that GSO oil based microemulsion encapsulating MEL could be a promising wound treatment option to exhibit accelerated wound healing effects.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137290869240307105633
2024-10-29
2024-12-26
Loading full text...

Full text loading...

References

  1. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014 6 265 265sr6 10.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  2. Kaplani K. Koutsi S. Armenis V. Skondra F.G. Karantzelis N. Tsaniras C.S. Taraviras S. Wound healing related agents: Ongoing research and perspectives. Adv. Drug Deliv. Rev. 2018 129 242 253 10.1016/j.addr.2018.02.007 29501699
    [Google Scholar]
  3. Schnittert J. Bansal R. Storm G. Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv. Drug Deliv. Rev. 2018 129 37 53 10.1016/j.addr.2018.01.020 29414674
    [Google Scholar]
  4. Koivisto L. Heino J. Häkkinen L. Larjava H. Integrins in wound healing. Adv. Wound Care 2014 3 12 762 783 10.1089/wound.2013.0436 25493210
    [Google Scholar]
  5. Martin P. Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 2015 173 2 370 378 10.1111/bjd.13954 26175283
    [Google Scholar]
  6. Barchitta M. Maugeri A. Favara G. Lio M.S.R. Evola G. Agodi A. Basile G. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int. J. Mol. Sci. 2019 20 5 1119 10.3390/ijms20051119 30841550
    [Google Scholar]
  7. Alipoor E. Jazayeri S. Dahmardehei M. Salehi S. Yaseri M. Emami M.R. Rezayat S.M. Hosseinzadeh-Attar M.J. Effect of a collagen-enriched beverage with or without omega-3 fatty acids on wound healing, metabolic biomarkers, and adipokines in patients with major burns. Clin. Nutr. 2023 42 3 298 308 10.1016/j.clnu.2022.12.014 36724726
    [Google Scholar]
  8. Zhao D. Yu Y. Shen Y. Liu Q. Zhao Z. Sharma R. Reiter R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019 10 249 10.3389/fendo.2019.00249 31057485
    [Google Scholar]
  9. Cipolla-Neto J. Amaral F.G. Melatonin as a hormone: New physiological and clinical insights. Endocr. Rev. 2018 39 6 990 1028 10.1210/er.2018‑00084 30215696
    [Google Scholar]
  10. Calderon-Jofre R. Moraga D. Moraga F.A. The effect of chronic intermittent hypobaric hypoxia on sleep quality and melatonin serum levels in chilean miners. Front. Physiol. 2022 12 809360 10.3389/fphys.2021.809360 35222064
    [Google Scholar]
  11. Kvetnoy I. Ivanov D. Mironova E. Evsyukova I. Nasyrov R. Kvetnaia T. Polyakova V. Melatonin as the cornerstone of neuroimmunoendocrinology. Int. J. Mol. Sci. 2022 23 3 1835 10.3390/ijms23031835 35163757
    [Google Scholar]
  12. Tan D.X. Reiter R.J. Zimmerman S. Hardeland R. Melatonin: Both a messenger of darkness and a participant in the cellular actions of non-visible solar radiation of near infrared light. Biology 2023 12 1 89 10.3390/biology12010089 36671781
    [Google Scholar]
  13. Vaseenon S. Chattipakorn N. Chattipakorn S.C. Effects of melatonin in wound healing of dental pulp and periodontium: Evidence from in vitro, in vivo and clinical studies. Arch. Oral Biol. 2021 123 105037 10.1016/j.archoralbio.2020.105037 33440268
    [Google Scholar]
  14. Amirzargar M.R. Shahriyary F. Shahidi M. Kooshari A. Vafajoo M. Nekouian R. Faranoush M. Angiogenesis, coagulation, and fibrinolytic markers in acute promyelocytic leukemia (NB4): An evaluation of melatonin effects. J. Pineal Res. 2023 75 3 e12901 10.1111/jpi.12901 37485730
    [Google Scholar]
  15. Gao T. Wang Z. Cao J. Dong Y. Chen Y. Melatonin ameliorates corticosterone-mediated oxidative stress-induced colitis in sleep-deprived mice involving gut microbiota. Oxid. Med. Cell. Longev. 2021 2021 1 24 10.1155/2021/9981480 34257825
    [Google Scholar]
  16. Ren M. Liu H. Jiang W. Zhou Z. Yao X. Liu Z. Ma N. Chen B. Yang M. Melatonin repairs osteoporotic bone defects in iron-overloaded rats through PI3K/AKT/GSK-3β/P70S6k signaling pathway. Oxid. Med. Cell. Longev. 2023 2023 1 14 10.1155/2023/7718155 36703914
    [Google Scholar]
  17. Yu S. Tang Q. Chen G. Lu X. Yin Y. Xie M. Long Y. Zheng W. Guo F. Shao L. Shi A. Chen L. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ. 2022 29 4 874 887 10.1038/s41418‑021‑00919‑4 35094018
    [Google Scholar]
  18. Al-Warhi T. Zahran E.M. Selim S. Al-Sanea M.M. Ghoneim M.M. Maher S.A. Mostafa Y.A. Alsenani F. Elrehany M.A. Almuhayawi M.S. Al Jaouni S.K. Abdelmohsen U.R. Elmaidomy A.H. Antioxidant and wound healing potential of vitis vinifera seeds supported by phytochemical characterization and docking studies. Antioxidants 2022 11 5 881 10.3390/antiox11050881 35624745
    [Google Scholar]
  19. Amita A. Vishnu A.G. Prashanth V. Incorporation of grape seed extract towards wound care product development . 3 Biotech 2021 11 6 261
    [Google Scholar]
  20. Gupta M. Dey S. Marbaniang D. Pal P. Ray S. Mazumder B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020 57 4 1205 1215 10.1007/s13197‑019‑04113‑w 32180617
    [Google Scholar]
  21. Izadpanah A. Soorgi S. Geraminejad N. hosseini M. Effect of grape seed extract ointment on cesarean section wound healing: A double-blind, randomized, controlled clinical trial. Complement. Ther. Clin. Pract. 2019 35 323 328 10.1016/j.ctcp.2019.03.011 31003677
    [Google Scholar]
  22. Chao C.Y. Mani M.P. Jaganathan S.K. Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS One 2018 13 10 e0205699 10.1371/journal.pone.0205699 30372449
    [Google Scholar]
  23. Payyal S.P. Rompicherla N.C. Sathyanarayana S.D. Shriram R.G. Vadakkepushpakath A.N. Microemulsion based gel of sulconazole nitrate for topical application. Turk J Pharm Sci 2020 17 3 259 264 10.4274/tjps.galenos.2019.75537 32636702
    [Google Scholar]
  24. Daryab M. Faizi M. Mahboubi A. Aboofazeli R. Preparation and characterization of lidocaine-loaded, microemulsion-based topical gels. Iran. J. Pharm. Res. 2022 21 1 e123787 10.5812/ijpr.123787 35765506
    [Google Scholar]
  25. Murat B. Kadri G. Pseudo ternary phase diagrams: A practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul. J. Pharm. 2021 51 1 42 49
    [Google Scholar]
  26. Vo T.V. Chou Y.Y. Chen B.H. Preparation of microemulsion from an alkyl polyglycoside surfactant and tea tree oil. Molecules 2021 26 7 1971 10.3390/molecules26071971 33807380
    [Google Scholar]
  27. Hung W.H. Chen P.K. Fang C.W. Lin Y.C. Wu P.C. Preparation and evaluation of azelaic acid topical microemulsion formulation: In vitro and in vivo study. Pharmaceutics 2021 13 3 410 10.3390/pharmaceutics13030410 33808836
    [Google Scholar]
  28. Liang Y. Zou J. Zhang X. Shi Y. Tai J. Wang Y. Guo D. Yang M. Preparation and quality evaluation of a volatile oil microemulsion from Flos magnoliae and Centipeda minima. Mol. Med. Rep. 2020 22 6 4531 4540 10.3892/mmr.2020.11571 33174034
    [Google Scholar]
  29. Yang J. Xu H. Wu S. Ju B. Zhu D. Yan Y. Wang M. Hu J. Preparation and evaluation of microemulsion-based transdermal delivery of Cistanche tubulosa phenylethanoid glycosides. Mol. Med. Rep. 2017 15 3 1109 1116 10.3892/mmr.2017.6147 28138704
    [Google Scholar]
  30. Sarheed O. Dibi M. Ramesh K.V.R.N.S. Drechsler M. Fabrication of alginate-based o/w nanoemulsions for transdermal drug delivery of lidocaine: Influence of the oil phase and surfactant. Molecules 2021 26 9 2556 10.3390/molecules26092556 33925764
    [Google Scholar]
  31. Üstündağ Okur N. Yavaşoğlu A. Karasulu H.Y. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery. Chem. Pharm. Bull. 2014 62 2 135 143 10.1248/cpb.c13‑00051 24492583
    [Google Scholar]
  32. Salimi A. Amirimoghadam S. Bagheri F. Preparation, optimization, and investigation of naringenin-loaded microemulsion for topical application. Iran. Biomed. J. 2022 26 5 366 373 10.52547/ibj.3722 36403103
    [Google Scholar]
  33. Chen H. Chang X. Du D. Li J. Xu H. Yang X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int. J. Pharm. 2006 315 1-2 52 58 10.1016/j.ijpharm.2006.02.015 16600540
    [Google Scholar]
  34. Špaglová M. Papadakos M. Čuchorová M. Matušová D. Release of tretinoin solubilized in microemulsion from carbopol and xanthan gel: In vitro versus ex vivo permeation study. Polymers 2023 15 2 329 10.3390/polym15020329 36679211
    [Google Scholar]
  35. de Assis K.M.A. da Silva Leite J.M. de Melo D.F. Borges J.C. Santana L.M.B. dos Reis M.M.L. Moreira V.M. da Rocha W.R.V. Catão R.M.R. dos Santos S.G. da Silva Portela A. de Sousa Silva S.M. de Oliveira T.K.B. de Souza da Silveira J.W. Pires E.G. Nonaka C.F.W. Sanches F.A.C. de Lima Damasceno B.P.G. Bicontinuous microemulsions containing Melaleuca alternifolia essential oil as a therapeutic agent for cutaneous wound healing. Drug Deliv. Transl. Res. 2020 10 6 1748 1763 10.1007/s13346‑020‑00850‑0 32924099
    [Google Scholar]
  36. Vlaia L. Olariu I. Muţ A.M. Coneac G. Vlaia V. Anghel D.F. Maxim M.E. Stângă G. Dobrescu A. Suciu M. Szabadai Z. Lupuleasa D. New, biocompatible, chitosan-gelled microemulsions based on essential oils and sucrose esters as nanocarriers for topical delivery of fluconazole. Pharmaceutics 2021 14 1 75 10.3390/pharmaceutics14010075 35056971
    [Google Scholar]
  37. Promjan S. Boonme P. Itraconazole-loaded microemulsions: Formulation, characterization, and dermal delivery using shed snakeskin as the model membrane. Pharm. Dev. Technol. 2023 28 1 51 60 10.1080/10837450.2022.2162082 36547258
    [Google Scholar]
  38. Masood A. Maheen S. Khan H.U. Shafqat S.S. Irshad M. Aslam I. Rasul A. Bashir S. Zafar M.N. Pharmaco-technical evaluation of statistically formulated and optimized dual drug-loaded silica nanoparticles for improved antifungal efficacy and wound healing. ACS Omega 2021 6 12 8210 8225 10.1021/acsomega.0c06242 33817480
    [Google Scholar]
  39. Ozdemir K.G. Yılmaz H. Yılmaz S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J. Biomed. Mater. Res. B Appl. Biomater. 2009 90B 1 82 86 10.1002/jbm.b.31256 18985793
    [Google Scholar]
  40. Havrdová M. Urbančič I. Bartoň Tománková K. Malina L. Štrancar J. Bourlinos A.B. Self-targeting of carbon dots into the cell nucleus: Diverse mechanisms of toxicity in NIH/3T3 and L929 cells. Int. J. Mol. Sci. 2021 22 11 5608 10.3390/ijms22115608 34070594
    [Google Scholar]
  41. Okur M.E. Ayla Ş. Yozgatlı V. Aksu N.B. Yoltaş A. Orak D. Sipahi H. Üstündağ Okur N. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharm. J. 2020 28 3 338 348 10.1016/j.jsps.2020.01.015 32194336
    [Google Scholar]
  42. Guo J.W. Pu C.M. Liu C.Y. Lo S.L. Yen Y.H. Curcumin-loaded self-microemulsifying gel for enhancing wound closure. Skin Pharmacol. Physiol. 2020 33 6 300 308 10.1159/000512122 33472208
    [Google Scholar]
  43. Masson-Meyers D.S. Andrade T.A.M. Caetano G.F. Guimaraes F.R. Leite M.N. Leite S.N. Frade M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020 101 1-2 21 37 10.1111/iep.12346 32227524
    [Google Scholar]
  44. Davidov-Pardo G. McClements D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2015 167 205 212 10.1016/j.foodchem.2014.06.082 25148980
    [Google Scholar]
  45. Patel V. Kukadiya H. Mashru R. Surti N. Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran. J. Pharm. Res. 2010 9 4 327 334 24381597
    [Google Scholar]
  46. Cortés H. Hernández-Parra H. Bernal-Chávez S.A. Prado-Audelo M.L.D. Caballero-Florán I.H. Borbolla-Jiménez F.V. González-Torres M. Magaña J.J. Leyva-Gómez G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials 2021 14 12 3197 10.3390/ma14123197 34200640
    [Google Scholar]
  47. Marchianò V. Matos M. Marcet I. Cabal M.P. Gutiérrez G. Blanco-López M.C. Stability of non-ionic surfactant vesicles loaded with rifamycin S. Pharmaceutics 2022 14 12 2626 10.3390/pharmaceutics14122626 36559121
    [Google Scholar]
  48. Flo A. Cambras T. Díez-Noguera A. Calpena A. Melatonin pharmacokinetics after transdermal administration changes according to the time of the day. Eur. J. Pharm. Sci. 2017 96 164 170 10.1016/j.ejps.2016.09.020 27644893
    [Google Scholar]
  49. Elshall A.A. Ghoneim A.M. Abdel-Mageed H.M. Osman R. Shaker D.S. Ex vivo permeation parameters and skin deposition of melatonin-loaded microemulsion for treatment of alopecia. Futur. J. Pharm. Sci. 2022 8 1 28 10.1186/s43094‑022‑00418‑4
    [Google Scholar]
  50. Üstündağ Okur N. Çağlar E.Ş. Arpa M.D. Karasulu H.Y. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm. Dev. Technol. 2017 22 4 500 510 10.3109/10837450.2015.1131716 26738443
    [Google Scholar]
  51. Špaglová M. Čuchorová M. Čierna M. Poništ S. Bauerová K. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels. Gels 2021 7 1 26 10.3390/gels7010026 33802416
    [Google Scholar]
  52. Hu Q. Fu X.L. Dong Y.Y. Ma J. Hua J. Li J.T. Liu K.X. Yang J. Yu C.X. D-Optimal design and development of a koumine-loaded microemulsion for rheumatoid arthritis treatment: In vivo and in vitro evaluation. Int. J. Nanomedicine 2023 18 2973 2988 10.2147/IJN.S406641 37304972
    [Google Scholar]
  53. Chen Y. Wang S. Hu Q. Zhou L. Self-emulsifying system co-loaded with paclitaxel and coix seed oil deeply penetrated to enhance efficacy in cervical cancer. Curr. Drug Deliv. 2023 20 7 919 926 10.2174/1567201819666220628094239 35762559
    [Google Scholar]
  54. Negi P. Singh B. Sharma G. Beg S. Raza K. Katare O.P. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv. 2016 23 3 941 957 10.3109/10717544.2014.923067 24892623
    [Google Scholar]
  55. Maulvi F.A. Desai A.R. Choksi H.H. Patil R.J. Ranch K.M. Vyas B.A. Shah D.O. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses. Int. J. Pharm. 2017 524 1-2 193 204 10.1016/j.ijpharm.2017.03.083 28366804
    [Google Scholar]
  56. Yilmaz Z. Dogan A.L. Ozdemir O. Serper A. Evaluation of the cytotoxicity of different root canal sealers on L929 cell line by MTT assay. Dent. Mater. J. 2012 31 6 1028 1032 10.4012/dmj.2012‑172 23207211
    [Google Scholar]
  57. Moalla Rekik D. Ben Khedir S. Ksouda Moalla K. Kammoun N.G. Rebai T. Sahnoun Z. Evaluation of wound healing properties of grape seed, sesame, and fenugreek oils. Evid. Based Complement. Alternat. Med. 2016 2016 1 12 10.1155/2016/7965689 27990170
    [Google Scholar]
  58. Al-Saedi Z.H.F. Salih Z.T. Ahmed K.K. Ahmed R.A. Jasim S.A. Formulation and characterization of oleogel as a topical carrier of azithromycin. AAPS PharmSciTech 2022 24 1 17 10.1208/s12249‑022‑02481‑9 36522608
    [Google Scholar]
  59. Liu W. Yu M. Xie D. Wang L. Ye C. Zhu Q. Liu F. Yang L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020 11 1 259 10.1186/s13287‑020‑01756‑x 32600435
    [Google Scholar]
  60. Pugazhenthi K. Kapoor M. Clarkson A.N. Hall I. Appleton I. Melatonin accelerates the process of wound repair in full‐thickness incisional wounds. J. Pineal Res. 2008 44 4 387 396 10.1111/j.1600‑079X.2007.00541.x 18205728
    [Google Scholar]
  61. Correa L.R.V. Martins S.J. Ribeiro de Souza T. de Castro N.R.G. Miguel P.M. de Menezes B.L. Amaral C.A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int. J. Biol. Macromol. 2020 162 1465 1475 10.1016/j.ijbiomac.2020.08.027 32781118
    [Google Scholar]
  62. Blažević F. Milekić T. Romić M.D. Juretić M. Pepić I. Filipović-Grčić J. Lovrić J. Hafner A. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym. 2016 146 445 454 10.1016/j.carbpol.2016.03.074 27112895
    [Google Scholar]
  63. Bhubhanil S. Talodthaisong C. Khongkow M. Namdee K. Wongchitrat P. Yingmema W. Hutchison J.A. Lapmanee S. Kulchat S. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci. Rep. 2021 11 1 21836 10.1038/s41598‑021‑01262‑x 34750447
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137290869240307105633
Loading
/content/journals/cnano/10.2174/0115734137290869240307105633
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: grapeseed oil ; wound healing ; immuno-modulatory ; melatonin ; synergistic activity ; Microemulsion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test