Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks.

Methods

With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current research. Herein, silver (Ag) coated rubber (AR) micro-particles (MPs) were prepared by coating Ag nanoparticles (NPs) onto waste AR MPs.

Results

The AR MPs not only exhibited superior electromagnetic shielding performance with the electromagnetic interference (EMI) shielding effectiveness (SE) value of 6.1 dB at 5.8 GHz, but also possessed excellent long-time stability (240 h) in high-temperature (85°C) and high humidity (85% RH) environment. Due to the low density (0.66 g/cm3) of AR-3 MPs, its practical application in lightweight and highly integrated electronic devices is guaranteed.

Conclusion

The developed AR MPs have exhibited broad application prospects in the electromagnetic interference (EMI) shielding field due to the good EMI shielding performance, high stability and low density.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137296313240417080456
2024-04-26
2025-03-30
Loading full text...

Full text loading...

References

  1. IqbalA. HassanT. GaoZ. ShahzadF. KooC.M. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review.Carbon202320354256010.1016/j.carbon.2022.11.104
    [Google Scholar]
  2. ShengA. YuJ. RenS. Printing nanostructured copper for electromagnetic interference shielding.ACS Appl. Electron. Mater.2022442047205210.1021/acsaelm.2c00199
    [Google Scholar]
  3. KimT. PakS. LimJ. Electromagnetic interference shielding with 2d copper sulfide.ACS Appl. Mater. Interfaces20221411134991350610.1021/acsami.2c00196 35274921
    [Google Scholar]
  4. XiaY. GaoW. GaoC. A review on graphene‐based electromagnetic functional materials: electromagnetic wave shielding and absorption.Adv. Funct. Mater.20223242220459110.1002/adfm.202204591
    [Google Scholar]
  5. HongJ. KwonJ. IqbalA. Electromagnetic shielding of optically-transparent and electrically-insulating ionic solutions.Chem. Eng. J.202243813556410.1016/j.cej.2022.135564
    [Google Scholar]
  6. ZhuE. PangK. ChenY. Ultra-stable graphene aerogels for electromagnetic interference shielding.Sci. China Mater.20236631106111310.1007/s40843‑022‑2208‑x
    [Google Scholar]
  7. RanS. XieJ. LiC. Polydopamine-assisted silver-coated spherical boron nitride as dual functional filler for thermal management and electromagnetic interference shielding.Diamond Related Materials202313510985610.1016/j.diamond.2023.109856
    [Google Scholar]
  8. ZhangH.Y. LiJ.Y. PanY. LiuY.F. MahmoodN. JianX. Flexible carbon fiber-based composites for electromagnetic interference shielding.Rare Met.202241113612362910.1007/s12598‑022‑02057‑3
    [Google Scholar]
  9. OliveiraF.M. LuxaJ. BoušaD. SoferZ. GusmãoR. Electromagnetic interference shielding by reduced graphene oxide foils.ACS Appl. Nano Mater.2022556792680010.1021/acsanm.2c00785
    [Google Scholar]
  10. HuangD. WuM. KugaS. HuangY. Graphite nanosheet-based carbon foams for electromagnetic interference shielding.ACS Appl. Nano Mater.2022511167841679210.1021/acsanm.2c03761
    [Google Scholar]
  11. BontașM.G. DiaconA. CălinescuI. Epoxy coatings containing modified graphene for electromagnetic shielding.Polymers20221412250810.3390/polym14122508 35746083
    [Google Scholar]
  12. BaK. ZhangM. WangX. Porous graphene composites fabricated by template method used for electromagnetic shielding and thermal conduction.Diamond Related Materials202313110958510.1016/j.diamond.2022.109585
    [Google Scholar]
  13. ZhangY. GuJ. A perspective for developing polymer-based electromagnetic interference shielding composites.Nano-Micro Lett.20221418910.1007/s40820‑022‑00843‑3 35362900
    [Google Scholar]
  14. ZhangJ. ZhangJ. ShuaiX. Design and synthesis strategies: 2D materials for electromagnetic shielding/absorbing.Chem. Asian J.202116233817383210.1002/asia.202100979 34585842
    [Google Scholar]
  15. GovindasamyT. MathewN.K. AsapuV.K. SubramanianV. SubramanianB. Investigation on evaluation of Fe3S4–Carbon black nanohybrids for EMI shield in X-band region.Diamond Related Materials202313110960810.1016/j.diamond.2022.109608
    [Google Scholar]
  16. AbrahamJ. ArifP.M. XavierP. Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT.Polymer201711210211510.1016/j.polymer.2017.01.078
    [Google Scholar]
  17. HuY. ZhangH. LiF. ChengX. ChenT. Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles.Polym. Test.201029560961210.1016/j.polymertesting.2010.03.009
    [Google Scholar]
  18. KwonS. MaR. KimU. ChoiH.R. BaikS. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber.Carbon20146811812410.1016/j.carbon.2013.10.070
    [Google Scholar]
  19. YangJ. LiaoX. WangG. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity.J. Mater. Chem. C Mater. Opt. Electron. Devices20208114715710.1039/C9TC05152J
    [Google Scholar]
  20. YangJ. LiaoX. WangG. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding.Compos. Sci. Technol.202120610866310.1016/j.compscitech.2021.108663
    [Google Scholar]
  21. KangP. JinZ. YangS. WangQ. The novel upgrade recycling of waste epoxy for thermal management and electromagnetic shielding application.Compos., Part A Appl. Sci. Manuf.202215210671010.1016/j.compositesa.2021.106710
    [Google Scholar]
  22. NieW. TongQ. LiQ. YangW. HaoW. From waste to functional materials: A multifunctional electromagnetic interference shielding composite from waste rock wool.ACS Appl. Electron. Mater.2021352187219410.1021/acsaelm.1c00169
    [Google Scholar]
  23. LiangS QinY GaoW WangM. A lightweight polyurethane-carbon microsphere composite foam for electromagnetic shielding. e- Polymers202222223
    [Google Scholar]
  24. LiS. HuangA. ChenY.J. LiD. TurngL.S. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding.Compos., Part B Eng.201815327728410.1016/j.compositesb.2018.07.049
    [Google Scholar]
  25. PraveenM. KarthikeyaG.S. KrishnaR.H. The role of magnetic nano CoFe2O4 and conductive MWCNT/graphene in LDPE-based composites for electromagnetic interference shielding in X-band.Diamond Related Materials202213010950110.1016/j.diamond.2022.109501
    [Google Scholar]
  26. WangQ.Z. WangN.N. TsengM.L. HuangY.M. LiN.L. Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China.J. Clean. Prod.202024911941110.1016/j.jclepro.2019.119411
    [Google Scholar]
  27. JiaL.C. LiY.K. YanD.X. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber.Carbon201712126727310.1016/j.carbon.2017.05.100
    [Google Scholar]
  28. ZhangJ. WangQ. HuangB. Flexible and high-performance electromagnetic shielding materials from waste polyurethane foams.Ind. Eng. Chem. Res.20226135130831309110.1021/acs.iecr.2c01940
    [Google Scholar]
  29. ZouL. LanC. ZhangS. Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding.Nano-Micro Lett.202113119010.1007/s40820‑021‑00709‑0 34498197
    [Google Scholar]
  30. TangC. YangJ. HuoY. Design of a stable and porous MF/Ti3C2Tx/PEG composite for the integration of electromagnetic interference shielding and thermal management.Compos., Part A Appl. Sci. Manuf.202316510733310.1016/j.compositesa.2022.107333
    [Google Scholar]
  31. KumaranR. Dinakaran, enhanced electromagnetic interference shielding in a au–mwcnt composite nanostructure dispersed PVDF Thin Films.J of Phys Chem C20161202016137718
    [Google Scholar]
  32. SahooP.K. AepuruR. PandaH.S. BahadurD. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic and electromagnetic shielding properties.Sci. Rep.2015511772610.1038/srep17726 26638827
    [Google Scholar]
  33. WangQ. ZhuS. HeH. Conductive and superhydrophobic Ag/PDMS films with high stability for passive de-icing and electromagnetic shielding.Prog. Org. Coat.202216910691910.1016/j.porgcoat.2022.106919
    [Google Scholar]
  34. ElshazlyE.H. MohamedA.K.S.H. AboelmagdH.A. Phytotoxicity and antimicrobial activity of green synthesized silver nanoparticles using Nigella sativa seeds on wheat seedlings.J. Chem.202220221910.1155/2022/9609559
    [Google Scholar]
  35. Abdel-RahimR.D. NagiubA.M. TaherM.A. Electrical and optical properties of flexible transparent silver nanowires electrodes.Int J Thin Fil Sci Technol202211112313210.18576/ijtfst/110116
    [Google Scholar]
  36. LaouiniS.E. BouafiaA. SoldatovA.V. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation.Membranes202111746810.3390/membranes11070468 34202049
    [Google Scholar]
  37. ShaoD. ZhangH. TaoL. CaoK. WeiQ. A facile approach for preparing ag functionalized nonwoven polypropylene membrane to improve its electrical conductivity and electromagnetic shielding performance.Materials201912229610.3390/ma12020296 30669271
    [Google Scholar]
  38. LvX.K. YuJ.G. Novel silver-plated nickel-coated graphite powder with excellent heat and humidity resistance: Facile preparation and performance investigation.Molecules20222713400710.3390/molecules27134007 35807253
    [Google Scholar]
  39. JeffriesA.M. WangZ. OpilaR.L. BertoniM.I. Tin sensitization and silver activation on indium tin oxide surfaces.Appl. Surf. Sci.202258815291610.1016/j.apsusc.2022.152916
    [Google Scholar]
  40. DengZ. ChenM. WuL. Novel Method to Fabricate SiO 2/Ag composite spheres and their catalytic, surface-enhanced raman scattering properties.J. Phys. Chem. C200711131116921169810.1021/jp073632h
    [Google Scholar]
  41. ZhangX. SunH. TanS. GaoJ. FuY. LiuZ. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study.Inorg. Chem. Commun.2019100445010.1016/j.inoche.2018.12.012
    [Google Scholar]
  42. JiangS. CuiC. BaiW. Superhydrophobic Ag/Viscose non-woven fabrics with excellent electric heating and high-efficient electromagnetic interference shielding.Fibers Polym.202223113091310210.1007/s12221‑022‑0227‑y
    [Google Scholar]
  43. WangH. LiS. LiuM. LiJ. ZhouX. Review on shielding mechanism and structural design of electromagnetic interference shielding composites.Macromol. Mater. Eng.20213066210003210.1002/mame.202100032
    [Google Scholar]
  44. WanasingheD. AslaniF. MaG. HabibiD. Advancements in electromagnetic interference shielding cementitious composites.Constr. Build. Mater.202023111711610.1016/j.conbuildmat.2019.117116
    [Google Scholar]
  45. HuS. LiS. XuW. YuW. ZhouY. Core@shell and sandwich-like Ti3C2T@Ni particles with enhanced electromagnetic interference shielding performance.Ceram. Int.20214721299953000410.1016/j.ceramint.2021.07.174
    [Google Scholar]
  46. MoučkaR. SedlačíkM. ProkešJ. KasparyanH. ValteraS. KopeckýD. Electromagnetic interference shielding of polypyrrole nanostructures.Synth. Met.2020269 33233379
    [Google Scholar]
  47. VovchenkoL. LozitskyO. MatzuiL. OliynykV. ZagorodniiV. SkorykM. Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3.Mater. Chem. Phys.202024012223410.1016/j.matchemphys.2019.122234
    [Google Scholar]
  48. KashiS. HadighehS. VarleyR. Microwave attenuation of graphene modified thermoplastic poly(butylene adipate-co-terephthalate) Nanocomposites.Polymers201810658210.3390/polym10060582 30966616
    [Google Scholar]
  49. Al-SalehM.H. Electrical, EMI shielding and tensile properties of PP/PE blends filled with GNP:CNT hybrid nanofiller.Synth. Met.201621732233010.1016/j.synthmet.2016.04.023
    [Google Scholar]
  50. ChauhanS.S. VermaP. MalikR.S. ChoudharyV. Thermomechanically stable dielectric composites based on poly(ether ketone) and BaTiO 3 with improved electromagnetic shielding properties in X‐band.J. Appl. Polym. Sci.2018135264641310.1002/app.46413
    [Google Scholar]
  51. JosephN. SinghS.K. SiruguduR.K. MurthyV.R.K. AnanthakumarS. SebastianM.T. Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications.Mater. Res. Bull.20134841681168710.1016/j.materresbull.2012.11.115
    [Google Scholar]
  52. MaL. DuY. ChenS. DuD. YeH. ZhangT.C. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1.Chemosphere2022287Pt 2132184410.1016/j.chemosphere.2021.132184 34507148
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137296313240417080456
Loading
/content/journals/cnano/10.2174/0115734137296313240417080456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test