Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C).

Methods

To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of single-walled carbon nanotubes (SWCNT).

Results

Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined.

Conclusions

Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137289697240216070503
2024-02-23
2025-04-13
Loading full text...

Full text loading...

References

  1. DharaK. DebiprosadR.M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection.Anal. Biochem.201958611341510.1016/j.ab.2019.113415 31479632
    [Google Scholar]
  2. Figueroa-MéndezR. Rivas-ArancibiaS. Vitamin C in health and disease: Its role in the metabolism of cells and redox state in the brain.Front. Physiol.2015639710.3389/fphys.2015.00397 26779027
    [Google Scholar]
  3. NjusD. KelleyP.M. TuY.J. SchlegelH.B. Ascorbic acid: The chemistry underlying its antioxidant properties.Free Radic. Biol. Med.2020159374310.1016/j.freeradbiomed.2020.07.013 32738399
    [Google Scholar]
  4. GopalakrishnanA. ShaR. VishnuN. KumarR. BadhulikaS. Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices.Nano-Structures & Nano-Objects2018169610310.1016/j.nanoso.2018.05.004
    [Google Scholar]
  5. SiddeegS.M. AlsaiariN.S. TahoonM.A. RebahF.B. The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid Review.Int. J. Electrochem. Sci.20201543327334610.20964/2020.04.13
    [Google Scholar]
  6. RahmanM.M. LopaN.S. KimK. LeeJ.J. Selective detection of l-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode.J. Electroanal. Chem.2015754879310.1016/j.jelechem.2015.06.018
    [Google Scholar]
  7. SinghA. SharmaA. AhmedA. SundramoorthyA.K. FurukawaH. AryaS. KhoslaA. Recent advances in electrochemical biosensors: Applications, challenges, and future scope.Biosensors202111933610.3390/bios11090336 34562926
    [Google Scholar]
  8. KumarS.A. LoP.H. ChenS.M. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71.Biosens. Bioelectron.200824451852310.1016/j.bios.2008.05.007 18586483
    [Google Scholar]
  9. MuruganN. JeromeR. PreethikaM. SundaramurthyA. SundramoorthyA.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid.J. Mater. Sci. Technol.20217212213110.1016/j.jmst.2020.07.037
    [Google Scholar]
  10. YangY.J. Facile deposition of polyvinylpyrrolidone-grafted multi-walled carbon nanotube on glassy carbon electrode and its application in the sensing of biomolecules.Fuller. Nanotub. Carbon Nanostruct.2016241279680310.1080/1536383X.2016.1242485
    [Google Scholar]
  11. SajidM. NazalM.K. ManshaM. AlsharaaA. JillaniS.M.S. BasheerC. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review.Trends Analyt. Chem.201676152910.1016/j.trac.2015.09.006
    [Google Scholar]
  12. DalkıranB. FernandesI.P.G. DavidM. BrettC.M.A. Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing.Mikrochim. Acta20201871160910.1007/s00604‑020‑04588‑x 33057990
    [Google Scholar]
  13. BarsanM.M. GhicaM.E. BrettC.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review.Anal. Chim. Acta201588112310.1016/j.aca.2015.02.059 26041516
    [Google Scholar]
  14. JeromeR. SundramoorthyA.K. Hydrothermal synthesis of boron nitride quantum dots/poly(luminol) nanocomposite for selective detection of ascorbic acid.J. Electrochem. Soc.20191669B3017B302410.1149/2.0041909jes
    [Google Scholar]
  15. SharmaV. SundaramurthyA. TiwariA. SundramoorthyA.K. Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples.Appl. Surf. Sci.201844955856610.1016/j.apsusc.2017.10.177
    [Google Scholar]
  16. KumarS.A. ChengH.W. ChenS.M. Selective detection of uric acid in the presence of ascorbic acid and dopamine using polymerized luminol film modified glassy carbon electrode.Electroanalysis200921202281228610.1002/elan.200904677
    [Google Scholar]
  17. BorzooeianZ. TaslimM.E. GhasemiO. RezvaniS. BorzooeianG. NourbakhshA. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining.PLoS One2018136e019797210.1371/journal.pone.0197972 29939999
    [Google Scholar]
  18. FarhadiF. AbbasiM. HaghiA.K. A stabilization of the electrospun, modified polyacrylonitril with functionalized single-walled carbon nanotubes.J. Eng. Fibers Fabrics2021161558925021104624310.1177/15589250211046243
    [Google Scholar]
  19. AqelA. El-NourK.M.M.A. AmmarR.A.A. Al-WarthanA. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation.Arab. J. Chem.20125112310.1016/j.arabjc.2010.08.022
    [Google Scholar]
  20. AinQ.T. HaqS.H. AlshammariA. Al-MutlaqM.A. AnjumM.N. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model.Beilstein J. Nanotechnol.20191090191110.3762/bjnano.10.91 31165017
    [Google Scholar]
  21. LiuX. ZhangH. MaJ. ZhengJ. High performance of nitrite electrochemical sensing based on Au-poly(thionine)-tin oxide/graphene nanosheets nanocomposites.Colloids Surf. A Physicochem. Eng. Asp.202264212858212858210.1016/j.colsurfa.2022.128582
    [Google Scholar]
  22. AtiehM.A. BakatherO.Y. Al-TawbiniB. BukhariA.A. AbuilaiwiF.A. FettouhiM.B. FettouhiM.B. Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water.Bioinorg. Chem. Appl.201020101910.1155/2010/603978 21350599
    [Google Scholar]
  23. DongK.Y. ChoiJ. LeeY.D. KangB.H. YuY.Y. ChoiH.H. JuB.K. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes.Nanoscale Res. Lett.2013811210.1186/1556‑276X‑8‑12 23286690
    [Google Scholar]
  24. BhirdeA.A. SousaA.A. PatelV. AzariA.A. GutkindJ.S. LeapmanR.D. RuslingJ.F. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes.Nanomedicine20094776377210.2217/nnm.09.56 19839812
    [Google Scholar]
  25. NathN.C.D. SarkerS. RahmanM.M. LeeH.J. KimY.J. LeeJ.J. A facile template-free chemical synthesis of poly(thionine) nanowires.Chem. Phys. Lett.2013559566010.1016/j.cplett.2012.12.047
    [Google Scholar]
  26. ZhongX. HuangJ. WangM. WangL. Polythionine coated on Au/Co3O4 enhances the performance for hydrogen evolution reaction.Nano2021165215005510.1142/S1793292021500557
    [Google Scholar]
  27. MoghaddamH.K. PakizehM. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent.J. Ind. Eng. Chem.20152122122910.1016/j.jiec.2014.02.028
    [Google Scholar]
  28. PamulaE. RouxhetP.G. Bulk and surface chemical functionalities of type III PAN-based carbon fibres.Carbon200341101905191510.1016/S0008‑6223(03)00177‑5
    [Google Scholar]
  29. WangL. QiT. HuM. ZhangS. XuP. QiD. WuS. XiaoH. Inhibiting mercury re-emission and enhancing magnesia recovery by cobalt-loaded carbon nanotubes in a novel magnesia desulfurization process.Environ. Sci. Technol.20175119113461135310.1021/acs.est.7b03364 28910083
    [Google Scholar]
  30. SáezE.I. CornR.M. In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes.Electrochim. Acta199338121619162510.1016/0013‑4686(93)85050‑9
    [Google Scholar]
  31. KaryakinA.A. KaryakinaE.E. SchmidtH.L. Electropolymerized azines: A new group of electroactive polymers.Electroanalysis199911314915510.1002/(SICI)1521‑4109(199903)11:3<149:AID‑ELAN149>3.0.CO;2‑G
    [Google Scholar]
  32. SchlerethD.D. KaryakinA.A. Electropolymerization of phenothiazine, phenoxazine and phenazine derivatives: Characterization of the polymers by UV-visible difference spectroelectrochemistry and Fourier transform IR spectroscopy.J. Electroanal. Chem.19953951-222123210.1016/0022‑0728(95)04127‑A
    [Google Scholar]
  33. LoP.H. KumarS.A. ChenS.M. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode.Colloids Surf. B Biointerfaces200866226627310.1016/j.colsurfb.2008.07.003 18715769
    [Google Scholar]
  34. MageshV. KothariV.S. GanapathyD. AtchudanR. AryaS. NallaswamyD. SundramoorthyA.K. Using sparfloxacin-capped gold nanoparticles to modify a screen-printed carbon electrode sensor for ethanol determination.Sensors20232319820110.3390/s23198201 37837031
    [Google Scholar]
  35. DuJ. YueR. RenF. YaoZ. JiangF. YangP. DuY. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.Biosens. Bioelectron.20145322022410.1016/j.bios.2013.09.064 24140872
    [Google Scholar]
  36. ZhangR. JinG.D. ChenD. HuX.Y. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode.Sens. Actuators B Chem.2009138117418110.1016/j.snb.2008.12.043
    [Google Scholar]
  37. YaoH. SunY. LinX. TangY. HuangL. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid.Electrochim. Acta200752206165617110.1016/j.electacta.2007.04.013
    [Google Scholar]
  38. HuangJ. LiuY. HouH. YouT. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode.Biosens. Bioelectron.200824463263710.1016/j.bios.2008.06.011 18640024
    [Google Scholar]
  39. LiH. WangY. YeD. LuoJ. SuB. ZhangS. KongJ. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite.Talanta201412725526110.1016/j.talanta.2014.03.034 24913885
    [Google Scholar]
  40. NancyT.E.M. KumaryV.A. Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.Electrochim. Acta201413323324010.1016/j.electacta.2014.04.027
    [Google Scholar]
  41. WangX. WuM. TangW. ZhuY. WangL. WangQ. HeP. FangY. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode.J. Electroanal. Chem.2013695101610.1016/j.jelechem.2013.02.021
    [Google Scholar]
  42. YangY.J. One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid.Sens. Actuators B Chem.201522175075910.1016/j.snb.2015.06.150
    [Google Scholar]
  43. YangY.J. LiW. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite.Biosens. Bioelectron.20145630030610.1016/j.bios.2014.01.037 24530832
    [Google Scholar]
  44. TeymourianH. SalimiA. KhezrianS. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.Biosens. Bioelectron.2013491810.1016/j.bios.2013.04.034 23708810
    [Google Scholar]
  45. MuruganN. KumarT.H.V. DeviN.R. SundramoorthyA.K. A flower-structured MoS2-decorated f-MWCNTs/ZnO hybrid nanocomposite-modified sensor for the selective electrochemical detection of vitamin C.New J. Chem.20194338151051511410.1039/C9NJ02993A
    [Google Scholar]
  46. LebègueE. White: Electrochemical methods: Fundamentals and applications. Transit Met Chem3; Wiley,2023486433436
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137289697240216070503
Loading
/content/journals/cnano/10.2174/0115734137289697240216070503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test