Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

The composition of kidney stones is related to the hardness of the stones. Knowing the composition of the stones before surgery can help plan the laser power and operation time of percutaneous nephroscopic surgery. Moreover, patients can be treated with medications if the kidney stone is compounded by uric acid before treatment, which can relieve the patients of the pain of surgery. However, although the literature generally reports the kidney stone composition analysis method base on dual-energy CT images, the accuracy of these methods is not enough; they need manual delineation of the kidney stone location, and these methods cannot analyze mixed composition kidney stones.

Objective

This study aimed to overcome the problem related to identifying kidney stone composition; we need an accurate method to analyze the composition of kidney stones.

Methods

In this paper, we proposed the automatic kidney stone composition analysis algorithm based on a dual-energy CT image. The algorithm first segmented the kidney stone mask by deep learning model, then analyzed the composition of each stone by machine learning model.

Results

The experimental results indicate that the proposed algorithm can segment kidney stones accurately (AUC=0.96) and predict kidney stone composition accurately (mean Acc=0.86, mean Se=0.75, mean Sp=0.9, mean F1=0.75, mean AUC=0.83, MR (Exact match ratio)=0.6).

Conclusion

The proposed method can predict the composition and location of kidney stones, which can guide its treatment.

Experimental results show that the weighting strategy can improve kidney stone segmentation performance. In addition, the multi-label classification model can predict kidney stone composition precisely, including the mixed composition kidney stones.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230908111745
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e080923220827.html?itemId=/content/journals/cmir/10.2174/1573405620666230908111745&mimeType=html&fmt=ahah

References

  1. ThongprayoonC. KrambeckA.E. RuleA.D. Determining the true burden of kidney stone disease.Nat. Rev. Nephrol.2020161273674610.1038/s41581‑020‑0320‑732753740
    [Google Scholar]
  2. KhanS.R. PearleM.S. RobertsonW.G. GambaroG. CanalesB.K. DoiziS. TraxerO. TiseliusH.G. Kidney stones.Nat. Rev. Dis. Primers201621160081600810.1038/nrdp.2016.827188687
    [Google Scholar]
  3. KazaR.K. PlattJ.F. CohanR.H. CaoiliE.M. Al-HawaryM.M. WasnikA. Dual-energy CT with single- and dual-source scanners: Current applications in evaluating the genitourinary tract.Radiographics201232235336910.1148/rg.32211506522411937
    [Google Scholar]
  4. ZhangG.M.Y. SunH. XueH.D. XiaoH. ZhangX.B. JinZ.Y. Prospective prediction of the major component of urinary stone composition with dual-source dual-energy CT in vivo. Clin. Radiol.201671111178118310.1016/j.crad.2016.07.01227554618
    [Google Scholar]
  5. QuM. Jaramillo-AlvarezG. Ramirez-GiraldoJ.C. LiuY. DuanX. WangJ. VrtiskaT.J. KrambeckA.E. LieskeJ. McColloughC.H. Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography.Eur. Radiol.20132351408141410.1007/s00330‑012‑2727‑423263603
    [Google Scholar]
  6. MorsbachF. WurnigM.C. MüllerD. KraussB. KorporaalJ.G. AlkadhiH. Feasibility of single-source dual-energy computed tomography for urinary stone characterization and value of iterative reconstructions.Invest. Radiol.201449312513010.1097/RLI.000000000000000224141741
    [Google Scholar]
  7. NevoA. MooreJ.P. HumphreysM.R. SalihS. KeddisM.A. RoseK.M. CheneyS.S. SternK.L. Does bladder stone composition predict kidney stone composition?Can. J. Urol.2020276104501045533325347
    [Google Scholar]
  8. KazemiY. MirroshandelS.A. A novel method for predicting kidney stone type using ensemble learning.Artif. Intell. Med.20188411712610.1016/j.artmed.2017.12.00129241659
    [Google Scholar]
  9. BlackK.M. LawH. AldoukhiA. DengJ. GhaniK.R. Deep learning computer vision algorithm for detecting kidney stone composition.BJU. Int.20201256920924
    [Google Scholar]
  10. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  11. ZhengJ. YuH. BaturJ. ShiZ. TuerxunA. AbulajiangA. LuS. KongJ. HuangL. WuS. WuZ. QiuY. LinT. ZouX. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning.Kidney Int.2021100487088010.1016/j.kint.2021.05.03134129883
    [Google Scholar]
  12. YuJ. DengY. LiuT. ZhouJ. JiaX. XiaoT. ZhouS. LiJ. GuoY. WangY. ZhouJ. ChangC. Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics.Nat. Commun.2020111480710.1038/s41467‑020‑18497‑332968067
    [Google Scholar]
  13. ZhengX. YaoZ. HuangY. YuY. WangY. LiuY. MaoR. LiF. XiaoY. WangY. HuY. YuJ. ZhouJ. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.Nat. Commun.2020111123610.1038/s41467‑020‑15027‑z32144248
    [Google Scholar]
  14. SunnetciK.M. AlkanA. Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images.Expert Syst. Appl.202321611943010.1016/j.eswa.2022.11943036570382
    [Google Scholar]
  15. Muhammed SunnetciK. UlukayaS. AlkanA. Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application.Biomed. Signal Process. Control20227710384410.1016/j.bspc.2022.103844
    [Google Scholar]
  16. Sünnetci̇K.M. OrduM. AlkanA. Gait based human identification: A comparative analysis.IDAP-2021 : 5th Int. Artif. Intell. Dat. Proc. symp.202111612510.53070/bbd.989226
    [Google Scholar]
  17. TuncerS.A. AlkanA. A decision support system for detection of the renal cell cancer in the kidney.Measurement201812329830310.1016/j.measurement.2018.04.002
    [Google Scholar]
  18. CuiY. SunZ. MaS. LiuW. WangX. ZhangX. WangX. Automatic detection and scoring of kidney stones on noncontrast CT Images Using S.T.O.N.E. Nephrolithometry: Combined deep learning and thresholding methods.Mol. Imaging Biol.202123343644510.1007/s11307‑020‑01554‑033108801
    [Google Scholar]
  19. JendebergJ. GeijerH. AlshamariM. LidénM. Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric.Eur. Radiol.20182862474248310.1007/s00330‑017‑5242‑929368161
    [Google Scholar]
  20. MilletariF. NavabN. AhmadiS. V-Net: Fully convolutional neural networks for volumetric medical image segmentation.2016 Fourth International Conference on 3D Vision (3DV)2016)Stanford, California, USAOctober 25th to 28th, 20162016565571
    [Google Scholar]
  21. HuangJ. LinZ. ChenY. ZhangX. ZhaoW. ZhangJ. LiY. HeX. ZhanM. LuL. JiangX. PengY. DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel.PeerJ Comput. Sci.20228e87110.7717/peerj‑cs.87135494791
    [Google Scholar]
  22. TangX.R. LiY.Q. LiangS.B. JiangW. LiuF. GeW.X. TangL.L. MaoY.P. HeQ.M. YangX.J. ZhangY. WenX. ZhangJ. WangY.Q. ZhangP.P. SunY. YunJ.P. ZengJ. LiL. LiuL.Z. LiuN. MaJ. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: A retrospective, multicentre, cohort study.Lancet Oncol.201819338239310.1016/S1470‑2045(18)30080‑929428165
    [Google Scholar]
  23. ChenT. GuestrinC. XGBoost: A scalable tree boosting system.Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Association for Computing MachinerySan Francisco, California, USA201678579410.1145/2939672.2939785
    [Google Scholar]
  24. HeK. ZhangX. RenS. SunJ. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.international conference on computer vision2015)07-13 December 2015Santiago, Chile201510261034
    [Google Scholar]
  25. FawcettT. An introduction to ROC analysis.Pattern Recognit. Lett.200627886187410.1016/j.patrec.2005.10.010
    [Google Scholar]
  26. LeverJ. KrzywinskiM. AltmanN. Classification evaluation.Nat. Methods201613860360410.1038/nmeth.3945
    [Google Scholar]
  27. RiJ. KimH. G-mean based extreme learning machine for imbalance learning.Digit. Signal Process.20209810263710.1016/j.dsp.2019.102637
    [Google Scholar]
  28. MeiS. ZhangK. Multi-label ℓ2-regularized logistic regression for predicting activation/inhibition relationships in human protein-protein interaction networks.Sci. Rep.2016613645310.1038/srep3645327819359
    [Google Scholar]
  29. VickersA.J. ElkinE.B. Decision curve analysis: A novel method for evaluating prediction models.Med. Decis. Making200626656557410.1177/0272989X0629536117099194
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230908111745
Loading
/content/journals/cmir/10.2174/1573405620666230908111745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test