Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

The objective of this study is to develop a more effective early detection system for Alzheimer's disease (AD) using a Deep Residual Network (ResNet) model by addressing the issue of convolutional layers in conventional Convolutional Neural Networks (CNN) and applying image preprocessing techniques.

The proposed method involves using Contrast Limited Adaptive Histogram Equalizer (CLAHE) and Boosted Anisotropic Diffusion Filters (BADF) for equalization and noise removal and K-means clustering for segmentation. A ResNet-50 model with shortcut links between three residual layers is proposed to extract features more efficiently. ResNet-50 is preferred over other ResNet types due to its intermediate depth, striking a balance between computational efficiency and improved performance, making it a widely adopted and effective architecture for various computer vision tasks. While other ResNet variations may offer higher depths, they are more prone to overfitting and computational complexity, which can hinder their practical application. The proposed method is evaluated on a dataset of MRI scans of AD patients.

The proposed method achieved high accuracy and minimum losses of 95% and 0.12, respectively. While some models showed better accuracy, they were prone to overfitting. In contrast, the suggested framework, based on the ResNet-50 model, demonstrated superior performance in terms of various performance metrics, providing a robust and reliable approach to Alzheimer's disease categorization.

The proposed ResNet-50 model with shortcut links between three residual layers, combined with image preprocessing techniques, provides an effective early detection system for AD. The study demonstrates the potential of deep learning and image processing techniques in developing accurate and efficient diagnostic tools for AD. The proposed method improves the existing approaches to AD classification and provides a promising framework for future research in this area.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230825113344
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e250823220361.html?itemId=/content/journals/cmir/10.2174/1573405620666230825113344&mimeType=html&fmt=ahah

References

  1. LukiwW.J. VergalloA. ListaS. HampelH. ZhaoY. Biomarkers for Alzheimer’s Disease (AD) and the application of precision medicine.J. Pers. Med.202010313810.3390/jpm1003013832967128
    [Google Scholar]
  2. SabbaghM.N. BlennowK. Peripheral biomarkers for Alzheimer’s Disease: Update and progress.Neurol. Ther.20198S22333610.1007/s40120‑019‑00171‑631833022
    [Google Scholar]
  3. HusainM. Blood tests to screen for Alzheimer’s disease.Brain2021144235535610.1093/brain/awaa46233693691
    [Google Scholar]
  4. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  5. MatejR. TesarA. RusinaR. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview.Clin. Biochem.201973263110.1016/j.clinbiochem.2019.08.00531400306
    [Google Scholar]
  6. DelmastroF. Di MartinoF. DolciottiC. Cognitive training, and stress detection in MCI frail older people through wearable sensors and machine learning.IEEE Access202086557365590
    [Google Scholar]
  7. LiuS.Q. LiuS.D. CaiW.D. Early diagnosis of Alzheimer’s disease with deep learning.In Proceedings of the 2014 IEEE 11t; International Symposium on Biomedical Imaging (ISBI)April–2 May, Beijing, China, pp, 1015–1018.201410.1109/ISBI.2014.6868045
    [Google Scholar]
  8. BrugnoloA. GirtlerN. DoglioneE. OrsoB. MassaF. DoneganiM.I. BaucknehtM. MorbelliS. ArnaldiD. NobiliF. PardiniM. Brain resources: How semantic cueing works in mild cognitive impairment due to Alzheimer’s Disease (MCI-AD).Diagnostics202111110810.3390/diagnostics1101010833445437
    [Google Scholar]
  9. GuoM. LiY. ZhengW. HuangK. ZhouL. HuX. YaoZ. HuB. A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs.J. Neurol.2020267102983299710.1007/s00415‑020‑09890‑532500373
    [Google Scholar]
  10. CountsS.E. IkonomovicM.D. MercadoN. VegaI.E. MufsonE.J. Biomarkers for the early detection and progression of Alzheimer’s Disease.Neurotherapeutics2017141355310.1007/s13311‑016‑0481‑z27738903
    [Google Scholar]
  11. HampelH. FrankR. BroichK. TeipelS.J. KatzR.G. HardyJ. HerholzK. BokdeA.L.W. JessenF. HoesslerY.C. SanhaiW.R. ZetterbergH. WoodcockJ. BlennowK. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives.Nat. Rev. Drug Discov.20109756057410.1038/nrd311520592748
    [Google Scholar]
  12. ZhaoA. LiY. YanY. QiuY. LiB. XuW. WangY. LiuJ. DengY. Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer’s dementia.Transl. Neurodegener.2020913010.1186/s40035‑020‑00210‑532741361
    [Google Scholar]
  13. LonieJ.A. TierneyK.M. EbmeierK.P. Screening for mild cognitive impairment: A systematic review.Int. J. Geriatr. Psychiatry200924990291510.1002/gps.220819226524
    [Google Scholar]
  14. ChoeY.M. LeeB.C. ChoiI.G. SuhG.H. LeeD.Y. KimJ.W. MMSE subscale scores as useful predictors of AD conversion in mild cognitive impairment.Neuropsychiatr. Dis. Treat.2020161767177510.2147/NDT.S26370232801712
    [Google Scholar]
  15. MilianM. LeiherrA.M. StratenG. MüllerS. LeyheT. EschweilerG.W. The mini-cog versus the mini-mental state examination and the clock drawing test in daily clinical practice: Screening value in a german memory clinic.Int. Psychogeriatr.201224576677410.1017/S104161021100228622172089
    [Google Scholar]
  16. Lopez-FontI. Cuchillo-IbañezI. Sogorb-EsteveA. García-AyllónM.S. Sáez-ValeroJ. Transmembrane amyloid-related proteins in CSF as potential biomarkers for Alzheimer’s Disease.Front. Neurol.2015612510.3389/fneur.2015.0012526082753
    [Google Scholar]
  17. DelabyC. MuñozL. TorresS. NadalA. Le BastardN. LehmannS. LleóA. AlcoleaD. Impact of CSF storage volume on the analysis of Alzheimer’s disease biomarkers on an automated platform.Clin. Chim. Acta20194909810110.1016/j.cca.2018.12.02130579960
    [Google Scholar]
  18. MohantyR. MårtenssonG. PoulakisK. Rodriguez-VieitezE. GrotheM. NordbergA.K. FerreiraD. WestmanE. Towards harmonizing subtyping methods for PET and MRI studies of Alzheimer’s disease.Alzheimers Dement.202016S4e04280710.1002/alz.042807
    [Google Scholar]
  19. OttoyJ. NiemantsverdrietE. VerhaegheJ. De RoeckE. StruyfsH. SomersC. wyffelsL. CeyssensS. Van MosseveldeS. Van den BosscheT. Van BroeckhovenC. RibbensA. BjerkeM. StroobantsS. EngelborghsS. StaelensS. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging.Neuroimage Clin.20192210177110.1016/j.nicl.2019.10177130927601
    [Google Scholar]
  20. PaganiM. NobiliF. MorbelliS. ArnaldiD. GiulianiA. ÖbergJ. GirtlerN. BrugnoloA. PiccoA. BaucknehtM. PivaR. ChincariniA. SambucetiG. JonssonC. De CarliF. Early identification of MCI converting to AD: a FDG PET study.Eur. J. Nucl. Med. Mol. Imaging201744122042205210.1007/s00259‑017‑3761‑x28664464
    [Google Scholar]
  21. ChoiB.K. MadusankaN. ChoiH.K. SoJ.H. KimC.H. ParkH.G. BhattacharjeeS. PrakashD. Convolutional neural network-based mr image analysis for Alzheimer’s disease classification.Curr. Med. Imaging Rev.2020161273510.2174/157340561566619102112385431989891
    [Google Scholar]
  22. ZhangX. ZongB. ZhaoW. LiL. Effects of mind-body exercise on brain structure and function a systematic review on MRI studies.Brain Sci.202111220510.3390/brainsci1102020533562412
    [Google Scholar]
  23. RenF. YangC. QiuQ. ZengN. CaiC. HouC. ZouQ. Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s Disease classificationIEEE Access20197181423181433
    [Google Scholar]
  24. SumanthS. SureshA. Survey on the identification of Alzheimer’s disease using magnetic resonance imaging (MRI) images. Int. J. Innov. Technol.Explore. Eng.2019835643570
    [Google Scholar]
  25. D’AngeloG. PalmieriF. GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems.Inf. Sci.202154713616210.1016/j.ins.2020.08.040
    [Google Scholar]
  26. MehmoodA. MaqsoodM. BashirM. ShuyuanY. A deep siamese convolution neural network for multi-class classification of alzheimer disease.Brain Sci.20201028410.3390/brainsci1002008432033462
    [Google Scholar]
  27. Al-ShoukryS. RassemT.H. MakbolN.M. Alzheimer’s Diseases detection by using deep learning algorithms.A Mini-Review; IEEE Access202087713177141
    [Google Scholar]
  28. AminiM. PedramM.M. MoradiA. OuchaniM. Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN).Comput. Math. Methods Med.2021202111510.1155/2021/551483934007305
    [Google Scholar]
  29. DingY. Jae HoS. MichaelG.K. HariT. RoyH. NathanielW.J. DmytroL. A deep learning model to predict a diagnosis of Alzheimer's disease by using 18F-FDG PET of the brain.Radiology20192456464
    [Google Scholar]
  30. EbrahimD. Amr MTA.E. HossamE.M. HeshamA. Alzheimer disease early detection using convolutional neural networks.In 2020 15th International Conference on Computer Engineering and Systems (ICCES)202016
    [Google Scholar]
  31. SuhC. H. ShimW. H. KimS. J. RohJ. H. LeeJ-H. KimM-J. ParkS. Development and validation of a deep learning-based automatic brain segmentation and classification algorithm for Alzheimer's disease using 3D T1-weighted volumetric image.Am. J. Neuroradiol.20201222272234
    [Google Scholar]
  32. SalehiA.W. PreetyB. BrijB.S. GauravG. AnkitaU. A CNN model: Earlier diagnosis and classification of Alzheimer's disease using MRI.In 2020 International Conference on Smart Electronics and Communication (ICOSEC)2020156161
    [Google Scholar]
  33. KundaramS.S. KetkiC.P Deep learning-based Alzheimer disease detection; In proceedings of the fourth international conference on microelectronics, computing and communication systems.SpringerSingapore2021587597
    [Google Scholar]
  34. Al-Khuzaie FanarE.K OguzB. AdilD.D Diagnosis of Alzheimer's disease using 2D MRI slices by a convolutional neural network.Applied Bionics and Biomechanics20212021
    [Google Scholar]
  35. NawazH. MuazzamM. SitaraA. FarhanA. IrfanM. SeungminRho. A deep feature-based real-time system for Alzheimer's disease stage detection; Multimedia Tools and Applications.2021283578935807
    [Google Scholar]
  36. CarvalhoE.D. CarvalhoE.D. de Carvalho FilhoA.O. de SousaA.D. de Andrade Lira RabuloR. COVID-19 diagnosis in CT images using CNN to extract features and multiple classifiers.IEEE Xplore26-28 October 2020, Cincinnati, OH, USA, pp. 425–431.2020
    [Google Scholar]
  37. KaurA. SinghC. Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization.Appl. Soft Comput.20175118019110.1016/j.asoc.2016.11.046
    [Google Scholar]
  38. SonkerD. Comparison of histogram equalization techniques for image enhancement of grayscale images in natural and unnatural light.Int. j. eng. res.2013895761
    [Google Scholar]
  39. PizerS.M. JohnstonR.E. EricksenJ.P. YankaskasB.C. MullerK.E. Contrast-limited adaptive histogram equalization: speed and effectivenessProceedings of the first conference on visualization in biomedical computing22-25 May 1990, Atlanta, GA, USA, pp. 337-345.199010.1109/VBC.1990.109340
    [Google Scholar]
  40. PisanoE.D. ZongS. HemmingerB.M. DeLucaM. JohnstonR.E. MullerK. BraeuningM.P. PizerS.M. Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms.J. Digit. Imaging199811419320010.1007/BF031780829848052
    [Google Scholar]
  41. RezaA.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement.J. VLSI Signal Process.2004381354410.1023/B:VLSI.0000028532.53893.82
    [Google Scholar]
  42. ShehrozS. KhanA.A Cluster centre initialization algorithm for k-means cluster.Pattern Recognit. Lett.200412931302
    [Google Scholar]
  43. SorinS. An overview on clustering methodsOSR J. Eng.200424719725
    [Google Scholar]
  44. AbdulA.S. MohdY.M. ZeehaidaM. AbdulAimi Salihai Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering.In WSEAS Transaction on Biology and Biomedicine.20131014155
    [Google Scholar]
  45. BeheshtiI. DemirelH. MatsudaH. InitiativeA.D.N. Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.Comput. Biol. Med.20178310911910.1016/j.compbiomed.2017.02.01128260614
    [Google Scholar]
  46. SukH.I. LeeS.W. ShenD. Alzheimer’s Disease Neuroimaging Initiative Deep ensemble learning of sparse regression models for brain disease diagnosis.Med. Image Anal.20173710111310.1016/j.media.2017.01.00828167394
    [Google Scholar]
  47. ShiB. ChenY. ZhangP. SmithC.D. LiuJ. Nonlinear feature transformation and deep fusion for Alzheimer’s Disease staging analysis.Pattern Recognit.20176348749810.1016/j.patcog.2016.09.032
    [Google Scholar]
  48. LiuM. ZhangD. ShenD. Alzheimer’s Disease Neuroimaging Initiative Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis.Hum. Brain Mapp.20143541305131910.1002/hbm.2225423417832
    [Google Scholar]
  49. AderghalK. Benois-PineauJ. AfdelK. Classification of sMRI for Alzheimer's disease Diagnosis with CNN: Single Siamese Networks with 2D+? Approach and Fusion on ADNIProceedings of the 2017 ACM on International Conference on Multimedia Retrieval2017494498ACM.10.1145/3078971.3079010
    [Google Scholar]
  50. IslamJ. YanqingZ. Alzheimer’s disease neuroimaging initiative. Deep convolutional neural networks for automated diagnosis of Alzheimer’s disease and mild cognitive impairment using 3D brain MRI.In International Conference on Brain InformaticsSpringer, Cham.2018359369
    [Google Scholar]
  51. Altunbey ÖzbayF. ÖzbayE. An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images.Turkish JAF Sci.Tech.202318113915510.55525/tjst.1212513
    [Google Scholar]
  52. ÖzbayF. A. ÖzbayE. Brain tumor detection with mRMR-based multimodal fusion of deep learning from MR images using Grad-CAM.Iran J. Comput. Sci.2023115
    [Google Scholar]
  53. ErogluY. YildirimM. CinarA. mRMR ‐based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images.Int. J. Imaging Syst. Technol.202232251752710.1002/ima.22632
    [Google Scholar]
  54. AsifS. YildirimM. CinarA. An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning.Multimed. Tools Appl.2023128
    [Google Scholar]
  55. AsifS. YiW. AinQ.U. HouJ. YiT. SiJ. Improving effectiveness of different deep transfer learning-based models for detecting brain tumors from MR images.IEEE Access202210347163473010.1109/ACCESS.2022.3153306
    [Google Scholar]
  56. WongvorachanT. SurinaH. OkanB. Comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining.202314154
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230825113344
Loading
/content/journals/cmir/10.2174/1573405620666230825113344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test