Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

With the advancement of computer and medical imaging technologies, a number of high-resolution, voxel-based, full-body human anatomical models have been developed for medical education, industrial design, and physics simulation studies. However, these models are limited in many applications because they are often only in an upstanding posture.

Objective

To quickly develop multi-pose human models for different applications. A semi-automatic framework for voxel deformation is proposed in the study.

Methods

This paper describes a framework for human pose deformation based on three-dimensional (3D) medical images. The voxel model is first converted into a surface model using a surface reconstruction algorithm. Second, a deformation skeleton based on human bones is defined, and the surface model is bound to the skeleton. The bone Glow algorithm is used to assign weights to the surface vertices. Then, the model is deformed to the target posture by using the Smoothed Rotation Enhanced As-Rigid-As-Possible (SR-ARAP) algorithm. Finally, the volume-filling algorithm is applied to refill the tissues into the deformed surface model.

Results

The proposed framework is used to deform two standing human models, and the sitting and running models are developed. The results show that the framework can successfully develop the target pose. When compared to the results of the As-Rigid-As-Possible algorithm, SR-ARAP preserves local tissues better.

Conclusion

The study proposes a frame for voxel human model deformation and improves the local tissue integrity during deformation.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230613103727
2024-01-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e130623217916.html?itemId=/content/journals/cmir/10.2174/1573405620666230613103727&mimeType=html&fmt=ahah

References

  1. DimbylowP.J. MannS.M. SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz.Phys. Med. Biol.199439101537155310.1088/0031‑9155/39/10/00315551530
    [Google Scholar]
  2. GandhiO.P. LazziG. FurseC.M. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz.IEEE Trans. Microw. Theory Tech.199644101884189710.1109/22.539947
    [Google Scholar]
  3. WangJ. FujiwaraO. FDTD analysis of dosimetry in human head model for a helical antenna portable telephone.IEICE Trans. Commun.2000833549554
    [Google Scholar]
  4. NagaokaT. WatanabeS. SakuraiK. KuniedaE. WatanabeS. TakiM. YamanakaY. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry.Phys. Med. Biol.200449111510.1088/0031‑9155/49/1/00114971769
    [Google Scholar]
  5. WuT. TanL. ShaoQ. ZhangC. ZhaoC. LiY. ConilE. HadjemA. WiartJ. LuB. XiaoL. WangN. XieY. ZhangS. Chinese adult anatomical models and the application in evaluation of RF exposures.Phys. Med. Biol.20115672075208910.1088/0031‑9155/56/7/01121386138
    [Google Scholar]
  6. ChristA. KainzW. HahnE.G. HoneggerK. ZeffererM. NeufeldE. RascherW. JankaR. BautzW. ChenJ. KieferB. SchmittP. HollenbachH.P. ShenJ. OberleM. SzczerbaD. KamA. GuagJ.W. KusterN. The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations.Phys. Med. Biol.2010552N23N3810.1088/0031‑9155/55/2/N0120019402
    [Google Scholar]
  7. GosselinM.C. NeufeldE. MoserH. HuberE. FarcitoS. GerberL. JedensjöM. HilberI. GennaroF.D. LloydB. CherubiniE. SzczerbaD. KainzW. KusterN. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0.Phys. Med. Biol.201459185287530310.1088/0031‑9155/59/18/528725144615
    [Google Scholar]
  8. ArtamonovaA.V. Virtual family: Forms and functions.Mediterr. J. Soc. Sci.2015610.5901/mjss.2015.v6n6s4p572
    [Google Scholar]
  9. LiuW. WangH. ZhangP. LiC. SunJ. ChenZ. XingS. LiangP. WuT. Statistical evaluation of radiofrequency exposure during magnetic resonant imaging: Application of whole-body individual human model and body motion in the coil.Int. J. Environ. Res. Public Health2019166106910.3390/ijerph1606106930934647
    [Google Scholar]
  10. LiC. WuT. Dosimetry of infant exposure to power-frequency magnetic fields: Variation of 99th percentile induced electric field value by posture and skin-to-skin contact.Bioelectromagnetics201536320421810.1002/bem.2189925708724
    [Google Scholar]
  11. LiC. ChenZ. YangL. LvB. LiuJ. VarsierN. HadjemA. WiartJ. XieY. MaL. WuT. Generation of infant anatomical models for evaluating electromagnetic field exposures.Bioelectromagnetics2015361102610.1002/bem.2186825328088
    [Google Scholar]
  12. ZhangC. LiC. YangL. HouW. DuM. WuT. ChenW. Assessment of twin fetal exposure to environmental magnetic and electromagnetic fields.Bioelectromagnetics202243316017310.1002/bem.2239735233784
    [Google Scholar]
  13. HeutinckP. KnoopsP. FlorezN.R. BiffiB. BreakeyW. JamesG. KoudstaalM. SchievanoS. DunawayD. JeelaniO. BorghiA. Statistical shape modelling for the analysis of head shape variations.J. Craniomaxillofac. Surg.202149644945510.1016/j.jcms.2021.02.02033712336
    [Google Scholar]
  14. JiangY. WangH. SunX. LiC. WuT. Evaluation of Chinese populational exposure to environmental electromagnetic field based on stochastic dosimetry and parametric human modelling.Environ. Sci. Pollut. Res. Int.20233014404454046010.1007/s11356‑023‑25153‑y36609755
    [Google Scholar]
  15. FindlayR.P. DimbylowP.J. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body.Phys. Med. Biol.200550163825383510.1088/0031‑9155/50/16/01116077229
    [Google Scholar]
  16. FindlayR.P. DimbylowP.J. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.Phys. Med. Biol.20065192339235210.1088/0031‑9155/51/9/01616625046
    [Google Scholar]
  17. DawsonT.W. CaputaK. StuchlyM.A. Numerical evaluation of 60 Hz magnetic induction in the human body in complex occupational environments.Phys. Med. Biol.19994441025104010.1088/0031‑9155/44/4/01510232812
    [Google Scholar]
  18. DawsonT.W. CaputaK. StuchlyM.A. Magnetic field exposures for UK live-line workers.Phys. Med. Biol.2002477995101210.1088/0031‑9155/47/7/30111996065
    [Google Scholar]
  19. NagaokaT. WatanabeS. Voxel-based variable posture models of human anatomy.Proc. IEEE200997122015202510.1109/JPROC.2009.2025662
    [Google Scholar]
  20. FarajN. ThieryJ.M. BoubekeurT. VoxMorph: 3-scale freeform deformation of large voxel grids.Comput. Graph.201236556256810.1016/j.cag.2012.03.020
    [Google Scholar]
  21. ZhuX. DingM. ZhangX. Free form deformation and symmetry constraint‐based multi‐modal brain image registration using generative adversarial nets.CAAI Trans. Intell. Technol.2023cit2.1215910.1049/cit2.12159
    [Google Scholar]
  22. JungH. OhM. LeeS. Learning free-form deformation for 3D face reconstruction from in-the-wild images.2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)20212737274210.1109/SMC52423.2021.9659124
    [Google Scholar]
  23. WarehamR. LasenbyJ. Bone glow: An improved method for the assignment of weights for mesh deformation. Articulated Motion and Deformable Objects2008637110.1007/978‑3‑540‑70517‑8_7
    [Google Scholar]
  24. LorensenW.E. ClineH.E. Marching cubes: A high resolution 3D surface construction algorithm.Comput. Graph.198721416316910.1145/37402.37422
    [Google Scholar]
  25. WuX.J. WangM.Y. HanB. An automatic hole-filling algorithm for polygon meshes.Comput. Aided Des. Appl.20085688989910.3722/cadaps.2008.889‑899
    [Google Scholar]
  26. Sorkine-HornungO. AlexaM. As-Rigid-As-Possible Surface Modeling.Eurographics Symposium on Geometry Processing2007
    [Google Scholar]
  27. DesbrunM. MeyerM. SchröderP. BarrA.H. Implicit fairing of irregular meshes using diffusion and curvature flow.International Conference on Computer Graphics and Interactive Techniques199910.1145/311535.311576
    [Google Scholar]
  28. BaranI PopovićJ. Automatic rigging and animation of 3D characters.ACM SIGGRAPH200726372–es10.1145/1276377.1276467
    [Google Scholar]
  29. van der VorstH.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems.SIAM J. Sci. Statist. Comput.199213263164410.1137/0913035
    [Google Scholar]
  30. LiuA. JoeB. Relationship between tetrahedron shape measures.BIT199434226828710.1007/BF01955874
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230613103727
Loading
/content/journals/cmir/10.2174/1573405620666230613103727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test