Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Whether deep learning-based CT reconstruction could improve lesion conspicuity on abdominal CT when the radiation dose is reduced is controversial.

Objectives

To determine whether DLIR can provide better image quality and reduce radiation dose in contrast-enhanced abdominal CT compared with the second generation of adaptive statistical iterative reconstruction (ASiR-V).

Aims

This study aims to determine whether deep-learning image reconstruction (DLIR) can improve image quality.

Methods

In this retrospective study, a total of 102 patients were included, who underwent abdominal CT using a DLIR-equipped 256-row scanner and routine CT of the same protocol on the same vendor's 64-row scanner within four months. The CT data from the 256-row scanner were reconstructed into ASiR-V with three blending levels (AV30, AV60, and AV100), and DLIR images with three strength levels (DLIR-L, DLIR-M, and DLIR-H). The routine CT data were reconstructed into AV30, AV60, and AV100. The contrast-to-noise ratio (CNR) of the liver, overall image quality, subjective noise, lesion conspicuity, and plasticity in the portal venous phase (PVP) of ASiR-V from both scanners and DLIR were compared.

Results

The mean effective radiation dose of PVP of the 256-row scanner was significantly lower than that of the routine CT (6.3±2.0 mSv 2.4±0.6 mSv; < 0.001). The mean CNR, image quality, subjective noise, and lesion conspicuity of ASiR-V images of the 256-row scanner were significantly lower than those of ASiR-V images at the same blending factor of routine CT, but significantly improved with DLIR algorithms. DLIR-H showed higher CNR, better image quality, and subjective noise than AV30 from routine CT, whereas plasticity was significantly better for AV30.

Conclusion

DLIR can be used for improving image quality and reducing radiation dose in abdominal CT, compared with ASIR-V.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230525104809
2023-07-07
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E250523217310.html?itemId=/content/journals/cmir/10.2174/1573405620666230525104809&mimeType=html&fmt=ahah

References

  1. ChartrandG. ChengP.M. VorontsovE. DrozdzalM. TurcotteS. PalC.J. KadouryS. TangA. Deep learning: A primer for radiologists.Radiographics20173772113213110.1148/rg.201717007729131760
    [Google Scholar]
  2. LeCunY BengioY HintonG. Deep learning.nature.20155217553436444
    [Google Scholar]
  3. ArndtC. GüttlerF. HeinrichA. BürckenmeyerF. DiamantisI. TeichgräberU. Deep learning CT image reconstruction in clinical practice.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.2021193325226110.1055/a‑1248‑255633302311
    [Google Scholar]
  4. VerdunF.R. RacineD. OttJ.G. TapiovaaraM.J. ToroiP. BochudF.O. VeldkampW.J.H. SchegererA. BouwmanR.W. GironI.H. MarshallN.W. EdyveanS. Image quality in CT: From physical measurements to model observers.Phys. Med.201531882384310.1016/j.ejmp.2015.08.00726459319
    [Google Scholar]
  5. ChenH. ZhangY. ZhangW. LiaoP. LiK. ZhouJ. WangG. a Low-dose CT via convolutional neural network.Biomed. Opt. Express20178267969410.1364/BOE.8.00067928270976
    [Google Scholar]
  6. WolterinkJ.M. LeinerT. ViergeverM.A. IšgumI. Generative adversarial networks for noise reduction in low-dose CT.IEEE Trans. Med. Imaging201736122536254510.1109/TMI.2017.270898728574346
    [Google Scholar]
  7. KoppF.K. CatalanoM. PfeifferD. RummenyE.J. NoëlP.B. Evaluation of a machine learning based model observer for x-ray CT. Medical Imaging 2018: Image Perception, Observer Performance, and Technology Assessment.International Society for Optics and Photonics2018
    [Google Scholar]
  8. NakamuraY. HigakiT. TatsugamiF. HondaY. NaritaK. AkagiM. AwaiK. Possibility of deep learning in medical imaging focusing improvement of computed tomography image quality.J. Comput. Assist. Tomogr.202044216116710.1097/RCT.000000000000092831789682
    [Google Scholar]
  9. ChangW. LeeJ.M. LeeK. YoonJ.H. YuM.H. HanJ.K. ChoiB.I. Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography.Invest. Radiol.201348859860610.1097/RLI.0b013e318289910423511193
    [Google Scholar]
  10. YoonJ.H. LeeJ.M. YuM.H. BaekJ.H. JeonJ.H. HurB.Y. DhanantwariA. ChungS.Y. HanJ.K. ChoiB.I. Comparison of iterative model-based reconstruction versus conventional filtered back projection and hybrid iterative reconstruction techniques: Lesion conspicuity and influence of body size in anthropomorphic liver phantoms.J. Comput. Assist. Tomogr.201438685986810.1097/RCT.000000000000014525321625
    [Google Scholar]
  11. WilleminkM.J. NoëlP.B. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence.Eur. Radiol.20192952185219510.1007/s00330‑018‑5810‑730377791
    [Google Scholar]
  12. HurB.Y. LeeJ.M. JooI. YuM.H. YoonJ.H. HanJ.K. ChoiB.I. Liver computed tomography with low tube voltage and model-based iterative reconstruction algorithm for hepatic vessel evaluation in living liver donor candidates.J. Comput. Assist. Tomogr.201438336737510.1097/RCT.0b013e3182ab6cc024681870
    [Google Scholar]
  13. ParkH.J. LeeJ.M. ParkS.B. LeeJ.B. JeongY.K. YoonJ.H. Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of hypervascular hepatocellular carcinoma.J. Comput. Assist. Tomogr.201640686387110.1097/RCT.000000000000045527331929
    [Google Scholar]
  14. ChoiJ.W. LeeJ.M. YoonJ.H. BaekJ.H. HanJ.K. ChoiB.I. Iterative reconstruction algorithms of computed tomography for the assessment of small pancreatic lesions: Phantom study.J. Comput. Assist. Tomogr.201337691192310.1097/RCT.0b013e3182a2181e24270113
    [Google Scholar]
  15. LaurentG. VillaniN. HossuG. RauchA. NoëlA. BlumA. GondimT.P.A. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance.Eur. Radiol.20192984016402510.1007/s00330‑018‑5988‑830701327
    [Google Scholar]
  16. SolomonJ. LyuP. MarinD. SameiE. Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm.Med. Phys.20204793961397110.1002/mp.1431932506661
    [Google Scholar]
  17. ParkC. ChooK.S. JungY. JeongH.S. HwangJ.Y. YunM.S. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness.Eur. Radiol.20213153156316410.1007/s00330‑020‑07358‑833057781
    [Google Scholar]
  18. SinghR. DigumarthyS.R. MuseV.V. KambadakoneA.R. BlakeM.A. TabariA. HoiY. AkinoN. AngelE. MadanR. KalraM.K. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT.AJR Am. J. Roentgenol.2020214356657310.2214/AJR.19.2180931967501
    [Google Scholar]
  19. GreffierJ. HamardA. PereiraF. BarrauC. PasquierH. BeregiJ.P. FrandonJ. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study.Eur. Radiol.20203073951395910.1007/s00330‑020‑06724‑w32100091
    [Google Scholar]
  20. KimJ.H. YoonH.J. LeeE. KimI. ChaY.K. BakS.H. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: Emphasis on image quality and noise.Korean J. Radiol.202122113113810.3348/kjr.2020.011632729277
    [Google Scholar]
  21. AkagiM. NakamuraY. HigakiT. NaritaK. HondaY. AwaiK. Deep learning reconstruction of equilibrium phase CT images in obese patients.Eur. J. Radiol.202013310934910.1016/j.ejrad.2020.10934933152626
    [Google Scholar]
  22. HsiehJ. LiuE. NettB. TangJ. ThibaultJ-B. SahneyS. A new era of image reconstruction: TrueFidelity™.In: Technical white paper on deep learning image reconstruction GE Healthcare.2019
    [Google Scholar]
  23. LimK. KwonH. ChoJ. OhJ. YoonS. KangM. HaD. LeeJ. KangE. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction.J. Comput. Assist. Tomogr.2015393110.1097/RCT.000000000000021625654782
    [Google Scholar]
  24. BongartzG. GoldingS. JurikA. LeonardiM. Van PersijnV.M.E. RodríguezR. European guidelines for multislice computed tomography.European Commission2004
    [Google Scholar]
  25. GeyerL.L. SchoepfU.J. MeinelF.G. NanceJ.W.Jr BastarrikaG. LeipsicJ.A. PaulN.S. RengoM. LaghiA. De CeccoC.N. State of the art: Iterative CT reconstruction techniques.Radiology2015276233935710.1148/radiol.201513276626203706
    [Google Scholar]
  26. LeipsicJ. LaBountyT.M. HeilbronB. MinJ.K. ManciniG.B.J. LinF.Y. TaylorC. DunningA. EarlsJ.P. Adaptive statistical iterative reconstruction: Assessment of image noise and image quality in coronary CT angiography.AJR Am. J. Roentgenol.2010195364965410.2214/AJR.10.428520729442
    [Google Scholar]
  27. YoonJ.H. ChangW. LeeE.S. LeeS.M. LeeJ.M. Double low-dose dual-energy liver CT in patients at high-risk of HCC: A prospective, randomized, single-center study.Invest. Radiol.202055634034810.1097/RLI.000000000000064331917765
    [Google Scholar]
  28. KangH.J. LeeJ.M. AhnS.J. BaeJ.S. KannengiesserS. KieferB. SuhK.S. Clinical feasibility of gadoxetic acid–enhanced isotropic high-resolution 3-dimensional magnetic resonance cholangiography using an iterative denoising algorithm for evaluation of the biliary anatomy of living liver donors.Invest. Radiol.201954210310910.1097/RLI.000000000000051230281556
    [Google Scholar]
  29. HashimotoM. ItohK. TakedaK. ShibataT. OkadaT. OkunoY. HinoM. Evaluation of biliary abnormalities with 64-channel multidetector CT.Radiographics200828111913410.1148/rg.28107505818203934
    [Google Scholar]
  30. FranckC. ZhangG. DeakP. ZancaF. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study.Phys. Med.202181869310.1016/j.ejmp.2020.12.00533445125
    [Google Scholar]
  31. SameiE. BakalyarD. BoedekerK.L. BradyS. FanJ. LengS. MyersK.J. PopescuL.M. RamirezG.J.C. RanalloF. SolomonJ. VaishnavJ. WangJ. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233.Med. Phys.20194611e735e75610.1002/mp.1376331408540
    [Google Scholar]
  32. SzczykutowiczT.P. ToiaG.V. DhanantwariA. NettB. A review of deep learning CT reconstruction: Concepts, limitations, and promise in clinical practice.Curr. Radiol. Rep.202210910111510.1007/s40134‑022‑00399‑5
    [Google Scholar]
  33. ShinY.J. ChangW. YeJ.C. KangE. OhD.Y. LeeY.J. ParkJ.H. KimY.H. Low-dose abdominal CT using a deep learning-based denoising algorithm: A comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm.Korean J. Radiol.202021335636410.3348/kjr.2019.041332090528
    [Google Scholar]
  34. ObuchowiczR PiorkowskiA UrbanikA StrzeleckiM Influence of acquisition time on MR image quality estimated with nonparametric measures based on texture features.Biomed Res Int.20192019370658110.1155/2019/3706581
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230525104809
Loading
/content/journals/cmir/10.2174/1573405620666230525104809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test