Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Introduction

Prostate magnetic resonance imaging (MRI) has been recently integrated into the pathway of diagnosis of prostate cancer (PCa). However, the lack of an optimal contrast-to-noise ratio hinders automatic recognition of suspicious lesions, thus developing a solution for proper delimitation of the tumour and separating it from the healthy parenchyma are extremely important.

Methods

As a solution to this unmet medical need, we aimed to develop a decision support system based on artificial intelligence, which automatically segments the prostate and any suspect area from the 3D MRI images.

We assessed retrospective data from all patients diagnosed with PCa by MRI-US fusion prostate biopsy, who underwent prostate MRI in our department due to a clinical or biochemical suspicion of PCa (n=33). All examinations were performed using a 1.5 Tesla MRI scanner. All images were reviewed by two radiologists, who performed manual segmentation of the prostate and all lesions. A total of 145 augmented datasets were generated. The performance of our fully automated end-to-end segmentation model based on a 3D UNet architecture and trained in two learning scenarios (on 14 or 28 patient datasets) was evaluated by two loss functions.

Results

Our model had an accuracy of over 90% for automatic segmentation of prostate and PCa nodules, as compared to manual segmentation. We have shown low complexity networks, UNet architecture with less than five layers, as feasible and to show good performance for automatic 3D MRI image segmentation. A larger training dataset could further improve the results.

Conclusion

Therefore, herein, we propose a less complex network, a slim 3D UNet with superior performance, being faster than the original five-layer UNet architecture.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230522151445
2024-01-01
2025-07-11
The full text of this item is not currently available.

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  2. GianniniV. MazzettiS. DefeudisA. StranieriG. CalandriM. BollitoE. BoscoM. PorpigliaF. ManfrediM. De PascaleA. VeltriA. RussoF. ReggeD. A fully automatic artificial intelligence system able to detect and characterize prostate cancer using multiparametric MRI: Multicenter and multi-scanner validation.Front. Oncol.20211171815510.3389/fonc.2021.71815534660282
    [Google Scholar]
  3. van WijkY. HalilajI. van LimbergenE. WalshS. LutgensL. LambinP. VannesteB.G.L. Decision support systems in prostate cancer treatment: An overview.BioMed Res. Int.2019201911010.1155/2019/496176831281840
    [Google Scholar]
  4. ParraN.A. PollackA. ChineaF.M. AbramowitzM.C. MarplesB. MuneraF. CastilloR. KryvenkoO.N. PunnenS. StoyanovaR. Automatic detection and quantitative DCE-MRI scoring of prostate cancer aggressiveness.Front. Oncol.2017725910.3389/fonc.2017.0025929177134
    [Google Scholar]
  5. KasivisvanathanV. RannikkoA.S. BorghiM. PanebiancoV. MynderseL.A. VaaralaM.H. BrigantiA. BudäusL. HellawellG. HindleyR.G. RoobolM.J. EggenerS. GheiM. VillersA. BladouF. VilleirsG.M. VirdiJ. BoxlerS. RobertG. SinghP.B. VenderinkW. HadaschikB.A. RuffionA. HuJ.C. MargolisD. CrouzetS. KlotzL. TanejaS.S. PintoP. GillI. AllenC. GigantiF. FreemanA. MorrisS. PunwaniS. WilliamsN.R. Brew-GravesC. DeeksJ. TakwoingiY. EmbertonM. MooreC.M. MRI-Targeted or standard biopsy for prostate-cancer diagnosis.N. Engl. J. Med.2018378191767177710.1056/NEJMoa180199329552975
    [Google Scholar]
  6. TianZ. LiuL. ZhangZ. FeiB. Superpixel-based segmentation for 3D prostate MR images.IEEE Trans. Med. Imaging201635379180110.1109/TMI.2015.249629626540678
    [Google Scholar]
  7. ZhengY. ComaniciuD. Marginal Space Learning for Medical Image Analysis.Springer New York201410.1007/978‑1‑4939‑0600‑0
    [Google Scholar]
  8. SiddiqueN. PahedingS. ElkinC.P. DevabhaktuniV. U-net and its variants for medical image segmentation: A review of theory and applications.IEEE202110.1109/ACCESS.2021.3086020
    [Google Scholar]
  9. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation.International Conference on Medical Image Computing and Computer-Assisted Intervention201523424110.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  10. DolzJ. XuX. RonyJ. YuanJ. LiuY. GrangerE. DesrosiersC. ZhangX. Ben AyedI. LuH. Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks.Med. Phys.201845125482549310.1002/mp.1324030328624
    [Google Scholar]
  11. YuL. YangX. ChenH. Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images.Proc AAAI Conf Artif Intell 31201710.1609/aaai.v31i1.10510
    [Google Scholar]
  12. LuZ. ZhaoM. PangY. CDA-Net for Automatic Prostate Segmentation in MR Images.Appl. Sci.20201019667810.3390/app10196678
    [Google Scholar]
  13. AldojN. BiavatiF. MichallekF. StoberS. DeweyM. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net.Sci. Rep.20201011431510.1038/s41598‑020‑71080‑032868836
    [Google Scholar]
  14. WangL. ZwiggelaarR. 3D texton based prostate cancer detection using multiparametric magnetic resonance imaging.Communications in Computer and Information Science.ChamSpringer2017309319
    [Google Scholar]
  15. Pellicer-ValeroO.J. Marenco JiménezJ.L. Gonzalez-PerezV. Casanova Ramón-BorjaJ.L. Martín GarcíaI. Barrios BenitoM. Pelechano GómezP. Rubio-BrionesJ. RupérezM.J. Martín-GuerreroJ.D. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images.Sci. Rep.2022121297510.1038/s41598‑022‑06730‑635194056
    [Google Scholar]
  16. YangX. LiuC. WangZ. YangJ. MinH.L. WangL. ChengK.T.T. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.Med. Image Anal.20174221222710.1016/j.media.2017.08.00628850876
    [Google Scholar]
  17. AlkadiR. TaherF. El-bazA. WerghiN. A deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance images.J. Digit. Imaging201932579380710.1007/s10278‑018‑0160‑130506124
    [Google Scholar]
  18. DiceL.R. Measures of the Amount of Ecologic Association Between Species.Ecology194526329730210.2307/1932409
    [Google Scholar]
  19. ZouK.H. WarfieldS.K. BharathaA. TempanyC.M.C. KausM.R. HakerS.J. WellsW.M.III JoleszF.A. KikinisR. Statistical validation of image segmentation quality based on a spatial overlap index.Acad. Radiol.200411217818910.1016/S1076‑6332(03)00671‑814974593
    [Google Scholar]
  20. YanL. LiuD. XiangQ. LuoY. WangT. WuD. ChenH. ZhangY. LiQ. PSP net-based automatic segmentation network model for prostate magnetic resonance imaging.Comput. Methods Programs Biomed.202120710621110621110.1016/j.cmpb.2021.10621134134076
    [Google Scholar]
  21. DaiZ. CarverE. LiuC. LeeJ. FeldmanA. ZongW. PantelicM. ElshaikhM. WenN. Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks.Adv. Radiat. Oncol.20205347348110.1016/j.adro.2020.01.00532529143
    [Google Scholar]
  22. WetterauerC. Federer-GsponerJ.R. LeboutteF.D.J.P. MonaR. EbbingJ. RentschC.A. MankaL. SeifertH.H. WylerS. ReckerF. KwiatkowskiM. Indication for active surveillance in the era of MRI-targeted prostate biopsies.Urol. Int.20221061838910.1159/00051730034350895
    [Google Scholar]
  23. ChenM.Y. WoodruffM.A. DasguptaP. RukinN.J. Variability in accuracy of prostate cancer segmentation among radiologists, urologists, and scientists.Cancer Med.20209197172718210.1002/cam4.338632810385
    [Google Scholar]
  24. CokerM.A. GlaserZ.A. GordetskyJ.B. ThomasJ.V. Rais-BahramiS. Targets missed: Predictors of MRI-targeted biopsy failing to accurately localize prostate cancer found on systematic biopsy.Prostate Cancer Prostatic Dis.201821454955510.1038/s41391‑018‑0062‑929988101
    [Google Scholar]
  25. KhosraviP. LysandrouM. EljalbyM. LiQ. KazemiE. ZisimopoulosP. SigarasA. BrendelM. BarnesJ. RickettsC. MeleshkoD. YatA. McClureT.D. RobinsonB.D. SbonerA. ElementoO. ChughtaiB. HajirasoulihaI. A deep learning approach to diagnostic classification of prostate cancer using pathology–radiology fusion.J. Magn. Reson. Imaging202154246247110.1002/jmri.2759933719168
    [Google Scholar]
  26. WinkelD.J. WetterauerC. MatthiasM.O. LouB. ShiB. KamenA. ComaniciuD. SeifertH.H. RentschC.A. BollD.T. Autonomous detection and classification of PI-RADS lesions in an MRI screening population incorporating multicenter-labeled deep learning and biparametric imaging: Proof of concept.Diagnostics2020101195110.3390/diagnostics1011095133202680
    [Google Scholar]
  27. HuangS. ChengZ. LaiL. ZhengW. HeM. LiJ. ZengT. HuangX. YangX. Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism.Med. Phys.202148127930794510.1002/mp.1528534658035
    [Google Scholar]
  28. ZabihollahyF. ViswanathanA.N. SchmidtE.J. MorcosM. LeeJ. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network.Med. Phys.202148117028704210.1002/mp.1526834609756
    [Google Scholar]
  29. JapkowiczN. StephenS. The class imbalance problem: A systematic study1.Intell. Data Anal.20026542944910.3233/IDA‑2002‑6504
    [Google Scholar]
  30. LinT.Y. GoyalP. GirshickR. HeK. DollarP. Focal Loss for Dense Object Detection.Proc. IEEE Int. Conf. Comput. Vis.201712999300710.1109/ICCV.2017.324
    [Google Scholar]
  31. WongT. SchiedaN. SathiadossP. HaroonM. Abreu-GomezJ. UkwattaE. Fully automated detection of prostate transition zone tumors on T2-weighted and apparent diffusion coefficient (ADC) map MR images using U-Net ensemble.Med. Phys.202148116889690010.1002/mp.1518134418108
    [Google Scholar]
  32. LeeP.Q. GuidaA. PattersonS. TrappenbergT. BowenC. BeyeaS.D. MerrimenJ. WangC. ClarkeS.E. Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study.Comput. Med. Imaging Graph.201975142310.1016/j.compmedimag.2019.04.00631117012
    [Google Scholar]
  33. SchelbP. TavakoliA.A. TubtaweeT. HielscherT. RadtkeJ.P. GörtzM. SchützV. KuderT.A. SchimmöllerL. StenzingerA. HohenfellnerM. SchlemmerH.P. BonekampD. Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.2021193555957310.1055/a‑1290‑807033212541
    [Google Scholar]
  34. SongY. HeF. DuanY. LiangY. YanX. A kernel correlation-based approach to adaptively acquire local features for learning 3D point clouds.Comput. Aided Des.202214610319610.1016/j.cad.2022.103196
    [Google Scholar]
  35. LiangY. HeF. ZengX. LuoJ. An improved loop subdivision to coordinate the smoothness and the number of faces via multi-objective optimization.Integr. Comput. Aided Eng.2021291234110.3233/ICA‑210661
    [Google Scholar]
  36. MărgineanR. AndreicaA. DioşanL. BálintZ. Feasibility of automatic seed generation applied to cardiac MRI image analysis.Mathematics202089151110.3390/math8091511
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230522151445
Loading
/content/journals/cmir/10.2174/1573405620666230522151445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test