Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Distinguishing between IHCC and HCC is important because of their differences in treatment and prognosis. The hybrid Positron Emission Tomography/magnetic Resonance Imaging (PET/MRI) system has become more widely accessible, with oncological imaging becoming one of its most promising applications.

Objective

The objective of this study was to see how well 18F-fluorodeoxyglucose (18F-FDG) PET/MRI could be used for differential diagnosis and histologic grading of primary hepatic malignancies.

Methods

We retrospectively evaluated 64 patients (53 patients with HCC, 11 patients with IHCC) with histologically proven primary hepatic malignancies using 18F-FDG/MRI. The Apparent Diffusion Coefficient (ADC), Coefficient of Variance (CV) of the ADC, and standardized uptake value (SUV) were calculated.

Results

The mean SUVmax value was higher for IHCC (7.7 ± 3.4) than for HCC (5.2 ± 3.1) (p = 0.019). The area under the curve (AUC) was 0.737, an optimal 6.98 cut-off value providing 72% sensitivity and 79% specificity. The ADCcv value in IHCC was statistically significantly higher than in HCC (p=0.014). ADC mean values in HCCs were significantly higher in low-grade tumors than in high-grade tumors. The AUC value was 0.73, and the optimal cut-off point was 1.20x10-6 mm2/s, giving 62% sensitivity and 72% specificity. The SUVmax value was also found to be statistically significantly higher in the high-grade group. The ADCcv value in the HCC low-grade group was found to be lower than in the high-grade group (p=0.036).

Conclusion

18F FDG PET/MRI is a novel imaging technique that can aid in the differentiation of primary hepatic neoplasms as well as tumor-grade estimation.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230508105758
2023-07-07
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E080523216636.html?itemId=/content/journals/cmir/10.2174/1573405620666230508105758&mimeType=html&fmt=ahah

References

  1. KimS.A. LeeJ.M. LeeK.B. KimS.H. YoonS.H. HanJ.K. ChoiB.I. Intrahepatic mass-forming cholangiocarcinomas: Enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern correlation with clinicopathologic findings.Radiology2011260114815710.1148/radiol.1110177721474703
    [Google Scholar]
  2. GranataV. FuscoR. CatalanoO. GuarinoB. GranataF. TatangeloF. AvalloneA. PiccirilloM. PalaiaR. IzzoF. PetrilloA. Intravoxel incoherent motion (IVIM) in diffusion-weighted imaging (DWI) for Hepatocellular carcinoma: Correlation with histologic grade.Oncotarget2016748793577936410.18632/oncotarget.1268927764817
    [Google Scholar]
  3. JudenhoferM.S. WehrlH.F. NewportD.F. CatanaC. SiegelS.B. BeckerM. ThielscherA. KneillingM. LichyM.P. EichnerM. KlingelK. ReischlG. WidmaierS. RöckenM. NuttR.E. MachullaH.J. UludagK. CherryS.R. ClaussenC.D. PichlerB.J. Simultaneous PET-MRI: A new approach for functional and morphological imaging.Nat. Med.200814445946510.1038/nm170018376410
    [Google Scholar]
  4. KwonH.W. BeckerA.K. GooJ.M. CheonG.J. FDG Whole-Body PET/MRI in oncology: A systematic review.Nucl. Med. Mol. Imaging2017511223110.1007/s13139‑016‑0411‑328250855
    [Google Scholar]
  5. FraioliF. ScreatonN.J. JanesS.M. WinT. MenezesL. KayaniI. SyedR. ZaccagnaF. O’MearaC. BarnesA. BomanjiJ.B. PunwaniS. GrovesA.M. Non-small-cell lung cancer resectability: Diagnostic value of PET/MR.Eur. J. Nucl. Med. Mol. Imaging2015421495510.1007/s00259‑014‑2873‑925120040
    [Google Scholar]
  6. NagtegaalI.D. OdzeR.D. KlimstraD. ParadisV. RuggeM. SchirmacherP. WashingtonK.M. CarneiroF. CreeI.A. The 2019 WHO classification of tumours of the digestive system.Histopathology202076218218810.1111/his.1397531433515
    [Google Scholar]
  7. PengJ. ZhengJ. YangC. WangR. ZhouY. TaoY.Y. GongX.Q. WangW.C. ZhangX.M. YangL. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma.Sci. Rep.2020101771710.1038/s41598‑020‑64804‑932382050
    [Google Scholar]
  8. ConradR. Castelino-PrabhuS. CobbC. RazaA. Cytopathologic diagnosis of liver mass lesions.J. Gastrointest. Oncol.201341536123450205
    [Google Scholar]
  9. OnurM.R. ÇiçekçiM. KayalıA. PoyrazA.K. KocakoçE. The role of ADC measurement in differential diagnosis of focal hepatic lesions.Eur. J. Radiol.2012813e171e17610.1016/j.ejrad.2011.01.11621353418
    [Google Scholar]
  10. MinJ.H. KimY.K. ChoiS.Y. JeongW.K. LeeW.J. HaS.Y. AhnS. AhnH.S. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: Classification tree analysis applying capsule and septum.Eur. J. Radiol.20179211010.1016/j.ejrad.2017.04.00828624005
    [Google Scholar]
  11. HigashiT. SagaT. NakamotoY. IshimoriT. MamedeM.H. WadaM. DoiR. HosotaniR. ImamuraM. KonishiJ. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer.J. Nucl. Med.200243217318011850481
    [Google Scholar]
  12. RohM.S. JeongJ.S. KimY.H. KimM.C. HongS.H. Diagnostic utility of GLUT1 in the differential diagnosis of liver carcinomas.Hepatogastroenterology200451591315131815362741
    [Google Scholar]
  13. LeeJ.D. YangW.I. ParkY.N. KimK.S. ChoiJ.S. YunM. KoD. KimT.S. ChoA.E. KimH.M. HanK.H. ImS.S. AhnY.H. ChoiC.W. ParkJ.H. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake.J. Nucl. Med.200546101753175916204727
    [Google Scholar]
  14. LimC.H. MoonS.H. ChoY.S. ChoiJ.Y. LeeK.H. HyunS.H. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/ computed tomography in patients with combined hepatocellular-cholangiocarcinoma.Eur. J. Nucl. Med. Mol. Imaging20194681705171210.1007/s00259‑019‑04327‑231049603
    [Google Scholar]
  15. KongE. ChunK.A. ChoI.H. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient.PLoS One2017127e018018410.1371/journal.pone.018018428672016
    [Google Scholar]
  16. BoroughsL.K. DeBerardinisR.J. Metabolic pathways promoting cancer cell survival and growth.Nat. Cell Biol.201517435135910.1038/ncb312425774832
    [Google Scholar]
  17. Robertson-TessiM. GilliesR.J. GatenbyR.A. AndersonA.R.A. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes.Cancer Res.20157581567157910.1158/0008‑5472.CAN‑14‑142825878146
    [Google Scholar]
  18. GaneshanB. MilesK.A. YoungR.C.D. ChatwinC.R. Hepatic entropy and uniformity: Additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT.Clin. Radiol.200762876176810.1016/j.crad.2007.03.00417604764
    [Google Scholar]
  19. GaneshanB. AbalekeS. YoungR.C.D. ChatwinC.R. MilesK.A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage.Cancer Imaging201010113714310.1102/1470‑7330.2010.002120605762
    [Google Scholar]
  20. MilesK.A. GaneshanB. GriffithsM.R. YoungR.C.D. ChatwinC.R. Colorectal cancer: Texture analysis of portal phase hepatic CT images as a potential marker of survival.Radiology2009250244445210.1148/radiol.250207187919164695
    [Google Scholar]
  21. AlicL. NiessenW.J. VeenlandJ.F. Quantification of heterogeneity as a biomarker in tumor imaging: A systematic review.PLoS One2014910e11030010.1371/journal.pone.011030025330171
    [Google Scholar]
  22. SteinD. GoldbergN. DomachevskyL. BernstineH. NidamM. Abadi-KorekI. GuindyM. SosnaJ. GrosharD. Quantitative biomarkers for liver metastases: Comparison of MRI diffusion-weighted imaging heterogeneity index and fluorine-18-fluoro-deoxyglucose standardised uptake value in hybrid PET/MR.Clin. Radiol.2018739832.e17832.e2210.1016/j.crad.2018.04.01229859634
    [Google Scholar]
  23. DongX. WuP. SunX. LiW. WanH. YuJ. XingL. Intra-tumour 18 F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.J. Med. Imaging Radiat. Oncol.201559333834510.1111/1754‑9485.1228925708154
    [Google Scholar]
  24. YoonH.J. KimY. KimB.S. Intratumoral metabolic heterogeneity predicts invasive components in breast ductal carcinoma in situ.Eur. Radiol.201525123648365810.1007/s00330‑015‑3761‑926063655
    [Google Scholar]
  25. BundschuhR.A. DingesJ. NeumannL. SeyfriedM. ZsótérN. PappL. RosenbergR. BeckerK. AstnerS.T. HenningerM. HerrmannK. ZieglerS.I. SchwaigerM. EsslerM. Textural parameters of tumor heterogeneity in (18)F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer.J. Nucl. Med.201455689189710.2967/jnumed.113.12734024752672
    [Google Scholar]
  26. RosenkrantzA.B. SigmundE.E. WinnickA. NiverB.E. SpielerB. MorganG.R. HajduC.H. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: Preliminary experience in fresh liver explants.Magn. Reson. Imaging201230101534154010.1016/j.mri.2012.04.02022819175
    [Google Scholar]
  27. NakanishiM. ChumaM. HigeS. OmatsuT. YokooH. NakanishiK. KamiyamaT. KubotaK. HagaH. MatsunoY. OnoderaY. KatoM. AsakaM. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma.Ann. Surg. Oncol.20121941302130910.1245/s10434‑011‑2066‑821927976
    [Google Scholar]
  28. IwataY. ShiomiS. SasakiN. JomuraH. NishiguchiS. SekiS. KawabeJ. OchiH. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors.Ann. Nucl. Med.200014212112610.1007/BF0298859110830530
    [Google Scholar]
  29. YangS.H. SuhK.S. LeeH.W. ChoE.H. ChoJ.Y. ChoY.B. YiN.J. LeeK.U. The role of18F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients.Liver Transpl.200612111655166010.1002/lt.2086116964589
    [Google Scholar]
  30. YaprakO. AcarS. ErtugrulG. DayangacM. Role of pre-transplant 18F-FDG PET/CT in predicting hepatocellular carcinoma recurrence after liver transplantation.World J. Gastrointest. Oncol.2018101033634310.4251/wjgo.v10.i10.33630364796
    [Google Scholar]
  31. TorizukaT. TamakiN. InokumaT. MagataY. SasayamaS. YonekuraY. TanakaA. YamaokaY. YamamotoK. KonishiJ. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET.J. Nucl. Med.19953610181118177562048
    [Google Scholar]
  32. ZhangY. HuangZ. ChenJ. Imaging biomarkers for predicting poor prognosis of hepatocellular carcinoma: A review.Hepatoma Res.2020630
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230508105758
Loading
/content/journals/cmir/10.2174/1573405620666230508105758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test