Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Introduction

In recent years, various deep learning algorithms have exhibited remarkable performance in various data-rich applications, like health care, medical imaging, as well as in computer vision. COVID-19, which is a rapidly spreading virus, has affected people of all ages both socially and economically. Early detection of this virus is therefore important in order to prevent its further spread.

Methods

COVID-19 crisis has also galvanized researchers to adopt various machine learning as well as deep learning techniques in order to combat the pandemic. Lung images can be used in the diagnosis of COVID-19.

Results

In this paper, we have analysed the COVID-19 chest CT image classification efficiency using multilayer perceptron with different imaging filters, like edge histogram filter, colour histogram equalization filter, color-layout filter, and Garbo filter in the WEKA environment.

Conclusion

The performance of CT image classification has also been compared comprehensively with the deep learning classifier Dl4jMlp. It was observed that the multilayer perceptron with edge histogram filter outperformed other classifiers compared in this paper with 89.6% of correctly classified instances.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230417090246
2023-07-07
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E170423215872.html?itemId=/content/journals/cmir/10.2174/1573405620666230417090246&mimeType=html&fmt=ahah

References

  1. TomarA. GuptaN. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures.Sci. Total Environ.202072813876210.1016/j.scitotenv.2020.13876232334157
    [Google Scholar]
  2. KalezhiJ. ChibulumaM. ChembeC. ChamaV. LungoF. KundaD. Modelling COVID-19 infections in Zambia using data mining techniques.Results Eng20221310036310.1016/j.rineng.2022.10036335317385
    [Google Scholar]
  3. AdenD. ZaheerS. KumarR. RajS. KhanT. VarshneyS. Beyond COVID-19 and SARS-CoV-2, cardiovascular outcomes of “long covid” from a pathological perspective – a look back and road ahead.Pathol. Res. Pract.202223915414410.1016/j.prp.2022.15414436242969
    [Google Scholar]
  4. LaiH. YangM. SunM. PanB. WangQ. WangJ. TianJ. DingG. YangK. SongX. GeL. Risk of incident diabetes after COVID-19 infection: A systematic review and meta-analysis.Metabolism202213715533010.1016/j.metabol.2022.15533036220361
    [Google Scholar]
  5. LiT. ZhengF. ChengF. The function of myeloid-derived suppressor cells in COVID-19 lymphopenia.Int. Immunopharmacol.202211210927710.1016/j.intimp.2022.10927736206651
    [Google Scholar]
  6. LiJ. WuD. YuY. LiT. LiK. XiaoM.M. LiY. ZhangZ.Y. ZhangG.J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor.Biosens. Bioelectron.202118311320610.1016/j.bios.2021.11320633823464
    [Google Scholar]
  7. LotfiM. HamblinM.R. RezaeiN. COVID-19: Transmission, prevention, and potential therapeutic opportunities.Clin. Chim. Acta202050825426610.1016/j.cca.2020.05.04432474009
    [Google Scholar]
  8. D’AntonioM. NguyenJ.P. ArthurT.D. MatsuiH. D’Antonio-ChronowskaA. FrazerK.A. NealeB.M. DalyM. GannaA. StevensC. PathakG.A. AndrewsS.J. KanaiM. CordioliM. GannaA. KarjalainenJ. PathakG.A. PolimantiR. AndrewsS.J. CordioliM. PirinenM. KanaiM. HarerimanaN. VeerapenK. WolfordB. NguyenH. SolomonsonM. StevensC. LiaoR.G. ChwialkowskaK. TrankiemA. BalaconisM.K. HaywardC. RichmondA. CampbellA. MorrisM. Fawns-RitchieC. GlessnerJ.T. ShawD.M. ChangX. PolikowskiH. LaurenP.E. ChenH-H. WanyingZ. HakonarsonH. PorteousD.J. BelowJ. NorthK. McCormickJ.B. TimmersP.R.H.J. WilsonJ.F. TenesaA. D’MellowK. KerrS.M. NiemiM.E.K. CordioliM. NkambulL. Aprile von HohenstaufenK. SobhA. EltoukhyM.M. YassenA.M. HegazyM.A.F. OkashaK. EidM.A. MoahmedH.S. ShahinD. El-SherbinyY.M. ElhadidyT.A. Abd ElghafarM.S. El-JawhariJ.J. MohamedA.A.S. ElnagdyM.H. SamirA. Abdel-AzizM. KhafagaW.T. El-LawatyW.M. TorkyM.S. El-shanshoryM.R. BatiniC. LeeP.H. ShrineN. WilliamsA.T. TobinM.D. GuyattA.L. JohnC. PackerR.J. AliA. FreeR.C. WangX. WainL.V. HolloxE.J. VennL.D. BeeC.E. AdamsE.L. NiemiM.E.K. NiavaraniA. CordioliM. NkambulL. SharififardB. AliannejadR. AmirsavadkouhiA. NaderpourZ. TadiH.A. AleaghaA.E. AhmadiS. Mohseni MoghaddamS.B. AdamsaraA. SaeediM. AbdollahiH. HosseiniA. ChariyavilaskulP. ChamnanphonM. SuttichetT.B. ShotelersukV. PongpanichM. PhokaewC. ChetruengchaiW. JantarabenjakulW. PutchareonO. TorvorapanitP. PuthanakitT. SuchartlikitwongP. HirankarnN. NilaratanakulV. SodsaiP. BrumptonB.M. HveemK. WillerC. WolfordB. ZhouW. RogneT. SolligardE. ÅsvoldB.O. AbedalthagafiM. AlaameryM. AlqahtaniS. BarakaD. Al HarthiF. AlsolmE. SafiehL.A. AlowaynA.M. AlqubaishiF. Al MutairiA. MangulS. AlshareefA. SawajiM. AlmutairiM. AljawiniN. AlbesherN. ArabiY.M. MahmoudE.S. KhattabA.K. HalawaniR.T. AlahmadeyZ.Z. AlbakriJ.K. FelembanW.A. SulimanB.A. HasanatoR. Al-AwdahL. AlghamdiJ. AlZahraniD. AlJohaniS. Al-AfghaniH. AlrashedM. AlDhawiN. AlBardisH. AlkwaiS. AlswailmM. AlmalkiF. AlbeladiM. AlmohammedI. BarhoushE. AlbaderA. MassadehS. AlMalikA. AlotaibiS. AlghamdiB. JungJ. FawzyM.S. LeeY. MagnusP. TrogstadL-I.S. HelgelandØ. HarrisJ.R. ManginoM. SpectorT.D. EmmaD. SmieszekS.P. PrzychodzenB.P. PolymeropoulosC. PolymeropoulosV. PolymeropoulosM.H. Fernandez-CadenasI. Perez-TurJ. Llucià-CarolL. CullellN. MuiñoE. Cárcel-MárquezJ. DeDiegoM.L. IglesiasL.L. PlanasA.M. SorianoA. RicoV. AgüeroD. BediniJ.L. LozanoF. DomingoC. RoblesV. Ruiz-JaénF. MárquezL. GomezJ. CotoE. AlbaicetaG.M. García-ClementeM. DalmauD. ArranzM.J. DietlB. Serra-LlovichA. SolerP. ColobránR. Martín-NaldaA. MartínezA.P. BernardoD. RojoS. Fiz-LópezA. ArribasE. Cal-SabaterP. SeguraT. González-VillaE. Serrano-HerasG. Martí-FàbregasJ. Jiménez-XarriéE. de Felipe MimbreraA. MasjuanJ. García-MadronaS. Domínguez-MayoralA. VillalongaJ.M. Menéndez-ValladaresP. ChasmanD.I. BuringJ.E. RidkerP.M. FrancoG. SessoH.D. MansonJ.A.E. ChangX. GlessnerJ.R. HakonarsonH. HaywardC. RichmondA. PorteousD.J. CampbellA. Fawns-RitchieC. Medina-GomezC. UitterlindenA.G. IkramM.A. KristianssonK. KoskelainenS. PerolaM. DonnerK. KivinenK. PalotieA. RipattiS. RuotsalainenS. KaunistoM. FinnGen NakanishiT. Butler-LaporteG. ForgettaV. MorrisonD.R. GhoshB. LaurentL. BelisleA. HenryD. AbdullahT. AdeleyeO. MamloukN. KimchiN. AfrasiabiZ. Branka VulesevicN.R. BouabM. GuzmanC. PetitjeanL. TseliosC. XueX. SchurrE. AfilaloJ. AfilaloM. OliveiraM. BrennerB. LepageP. RagoussisJ. AuldD. BrassardN. DurandM. ChasséM. KaufmannD.E. LathropG.M. MooserV. RichardsJ.B. LiR. AdraD. RahmouniS. GeorgesM. MoutschenM. MissetB. DarcisG. GuiotJ. GuntzJ. AzarzarS. GofflotS. BeguinY. ClaassenS. MalaiseO. HuynenP. MeurisC. ThysM. JacquesJ. LéonardP. FrippiatF. GiotJ-B. SauvageA-S. Von FrenckellC. BelhajY. LambermontB. NiemiM.E.K. CordioliM. PigazziniS. NkambuleL. DayaM. ShorttJ. RafaelsN. WicksS.J. CrooksK. BarnesK.C. GignouxC.R. ChavanS. LaiskT. LällK. LepametsM. MägiR. EskoT. ReimannE. MilaniL. AlavereH. MetsaluK. PuuseppM. MetspaluA. NaaberP. LaaneE. PesukovaJ. PetersonP. KisandK. TabriJ. AllosR. HensenK. StarkopfJ. RingmetsI. TammA. KallasteA. BochudP-Y. RivoltaC. BibertS. QuinodozM. KamdarD. BoillatN. NussleS.G. AlbrichW. SuhN. NeofytosD. ErardV. VoideC. FHoGID RegCOVID P-PredictUs SeroCOVID CRiPSI de CidR. Galván-FemeníaI. BlayN. CarrerasA. CortésB. FarréX. SumoyL. MorenoV. MercaderJ.M. Guindo-MartinezM. TorrentsD. KogevinasM. Garcia-AymerichJ. Castaño-VinyalsG. DobañoC. RenieriA. MariF. FalleriniC. DagaS. BenettiE. BaldassarriM. FavaF. FrullantiE. ValentinoF. DoddatoG. GilibertiA. TitaR. AmitranoS. BruttiniM. CrociS. MeloniI. MencarelliM.A. Lo RizzoC. PintoA.M. BeligniG. TommasiA. Di SarnoL. PalmieriM. CarrieroM.L. AlaverdianD. BusaniS. BrunoR. VecchiaM. BelliM.A. PicchiottiN. SanaricoM. GoriM. FuriniS. MantovaniS. LudovisiS. MondelliM.U. CastelliF. Quiros-RoldanE. AntoniM.D. ZanellaI. VaghiM. RusconiS. SianoM. MontagnaniF. EmiliozziA. FabbianiM. RossettiB. BargagliE. BergantiniL. D’AlessandroM. CameliP. BennettD. AneddaF. MarcantonioS. ScollettaS. FranchiF. MazzeiM.A. GuerriniS. ConticiniE. CantariniL. FredianiB. TacconiD. SpertilliC. FeriM. DonatiA. ScalaR. GuidelliL. SpargiG. CorridiM. NencioniC. CrociL. BandiniM. CaldarelliG.P. PiacentiniP. DesanctisE. CappelliS. CanacciniA. VerzuriA. AnemoliV. OgnibeneA. PancrazziA. LorubbioM. D’Arminio MonforteA. MiragliaF.G. GirardisM. VenturelliS. CossarizzaA. AntinoriA. VergoriA. GabrieliA. RivaA. FrancisciD. SchiaroliE. PaciosiF. ScottonP.G. AndrettaF. PaneseS. ScaggianteR. GattiF. ParisiS.G. BarattiS. Della MonicaM. PiscopoC. CapassoM. RussoR. AndolfoI. IolasconA. FiorentinoG. CarellaM. CastoriM. MerlaG. SqueoG.M. AucellaF. RaggiP. MarcianoC. PernaR. BassettiM. Di BiagioA. SanguinettiM. MasucciL. ValenteS. MandalàM. GiorliA. SalerniL. ZucchiP. ParraviciniP. MenattiE. TrottaT. GiannattasioF. CoiroG. LenaF. CovielloD.A. MussiniC. MartinelliE. MancarellaS. TavecchiaL. CrottiL. GabbiC. RizziM. MaggioloF. RipamontiD. BachettiT. La RovereM.T. Sarzi-BragaS. BussottiM. CeriS. PinoliP. RaimondiF. BiscariniF. StellaA. ZguroK. CapitaniK. SuardiC. NiemiM.E.K. CordioliM. PigazziniS. DeiS. ParatiG. RavagliaS. ArtusoR. CordioliM. PigazziniS. NkambuleL. BottàG. Di DomenicoP. RancanI. Francesco BianchiA.P. RomaniD. BergomiP. CatenaE. ColomboR. TanfoniM. VincentiA. FerriC. GrassiD. PessinaG. TumbarelloM. Di PietroM. SabrinaR. LuchiS. BarbieriC. AcquiliniD. AndreucciE. PaciosiF. SegalaF.V. TiseoG. FalconeM. ListaM. PoscenteM. De VivoO. PetrocelliP. GuarnacciaA. BaroniS. SmithA.V. BoughtonA.P. LiK.W. LeFaiveJ. AnnisA. JusticeA.E. MirshahiT. ChittoorG. JosyulaN.S. KosmickiJ.A. FerreiraM.A.R. LeaderJ.B. CareyD.J. GassM.C. HorowitzJ.E. CantorM.N. YadavA. BarasA. AbecasisG.R. van HeelD.A. HuntK.A. MasonD. HuangQ.Q. FinerS. TrivediB. GriffithsC.J. MartinH.C. WrightJ. TrembathR.C. SoranzoN. ZhaoJ.H. ButterworthA.S. DaneshJ. Di AngelantonioE. Marike BoezenL.F. DeelenP. ClaringbouldA. LoperaE. WarmerdamR. VonkJ.M. van BloklandI. LantingP. OriA.P.S. Sebastian ZöllnerB.W. WangJ. BeckA. PelosoG. HoY-L. SunY.V. HuffmanJ.E. O’DonnellC.J. ChoK. TsaoP. GazianoJ.M. NivardM.M.G. de geusE.E.J.C. BartelsM. HottengaJ.J. WeissS.T. KarlsonE.W. SmollerJ.W. GreenR.C. Anne FengY-C. MercaderJ. MurphyS.N. MeigsJ.B. WoolleyA.E. PerezE.F. RaderD. VermaA. RitchieM.D. LiB. VermaS.S. LucasA. BradfordY. ZebergH. FrithiofR. HultströmM. NiemiM.E.K. CordioliM. PigazziniS. LipcseyM. NkambulL. TardifN. RooyackersO. GripJ. MaricicT. NakanishiT. Butler-LaporteG. ForgettaV. RichardsJ.B. KarczewskiK.J. AtkinsonE.G. KanaiM. TsuoK. BayaN. TurleyP. GuptaR. CallierS. WaltersR.K. PalmerD.S. SarmaG. SolomonsonM. ChengN. LuW. BryantS. ChurchhouseC. CusickC. GoldsteinJ.I. KingD. ZhouW. SeedC. FinucaneH. MartinA.R. BryantS. SatterstromF.K. WilsonD.J. ArmstrongJ. RudkinJ.K. BandG. EarleS.G. LinS-K. ArningN. CrookD.W. WyllieD.H. O’ConnellA.M. SpencerC.C.A. KoellingN. CaulfieldM.J. ScottR.H. FowlerT. MoutsianasL. KousathanasA. PaskoD. WalkerS. RendonA. StuckeyA. OdhamsC.A. RhodesD. ChanG. ArumugamP. BallC.A. HongE.L. RandK. GirshickA. GuturuH. BaltzellA.H. RobertsG. ParkD. CoignetM. McCurdyS. KnightS. ParthaR. RheadB. ZhangM. BerkowitzN. GaddisM. NotoK. RuizL. PavlovicM. SloofmanL.G. AndrewsS.J. CharneyA.W. BeckmannN.D. SchadtE.E. JordanD.M. ThompsonR.C. GettlerK. Abul-HusnN.S. AscolilloS. BuxbaumJ.D. ChaudharyK. ChoJ.H. ItanY. KennyE.E. BelbinG.M. SealfonS.C. SebraR.P. SalibI. CollinsB.L. LevyT. BritvanB. KellerK. TangL. PeruggiaM. HiesterL.L. NibloK. AksentijevichA. LabkowskyA. KarpA. ZlatopolskyM. PreussM. LoosR.J.F. NadkarniG.N. DoR. HoggartC. ChoiS. UnderwoodS.J. O’ReillyP. HuckinsL.M. ZyndorfM. SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues.Cell Rep.202137711002010.1016/j.celrep.2021.11002034762851
    [Google Scholar]
  9. BhattacharyaS. Reddy MaddikuntaP.K. PhamQ.V. GadekalluT.R. Krishnan SS.R. ChowdharyC.L. AlazabM. Jalil PiranM. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey.Sustain Cities Soc.20216510258910.1016/j.scs.2020.10258933169099
    [Google Scholar]
  10. MiddyaA.I. RoyS. Spatio-temporal variation of COVID-19 health outcomes in India using deep learning based models.Technol. Forecast. Soc. Change202218312191110.1016/j.techfore.2022.12191135938066
    [Google Scholar]
  11. GuptaK. BajajV. Deep learning models-based CT-scan image classification for automated screening of COVID-19.Biomed. Signal Process. Control20238010426810.1016/j.bspc.2022.10426836267466
    [Google Scholar]
  12. DingS. WangH. LuH. NappiM. WanS. Two path gland segmentation algorithm of colon pathological image based on local semantic guidance.IEEE J. Biomed. Health Inform.202327417010810.1109/JBHI.2022.320787436126032
    [Google Scholar]
  13. SuC. XuZ. PathakJ. WangF. Deep learning in mental health outcome research: A scoping review.Transl. Psychiatry202010111610.1038/s41398‑020‑0780‑332532967
    [Google Scholar]
  14. HuangJ. ChaiJ. ChoS. Deep learning in finance and banking: A literature review and classification.Frontiers of Business Research in China20201411310.1186/s11782‑020‑00082‑6
    [Google Scholar]
  15. AmpavathiA. SaradhiT.V. Multi disease-prediction framework using hybrid deep learning: An optimal prediction model.Comput. Methods Biomech. Biomed. Engin.202124101146116810.1080/10255842.2020.186972633427480
    [Google Scholar]
  16. HuK. HuangY. HuangW. TanH. ChenZ. ZhongZ. LiX. ZhangY. GaoX. Deep supervised learning using self-adaptive auxiliary loss for COVID-19 diagnosis from imbalanced CT images.Neurocomputing202145823224510.1016/j.neucom.2021.06.01234121811
    [Google Scholar]
  17. NajafabadiM.M. VillanustreF. KhoshgoftaarT.M. SeliyaN. WaldR. MuharemagicE. Deep learning applications and challenges in big data analytics.J. Big Data201521110.1186/s40537‑014‑0007‑7
    [Google Scholar]
  18. Aydın TemelF. Cağcağ YolcuÖ. KuleyinA. A multilayer perceptron-based prediction of ammonium adsorption on zeolite from landfill leachate: Batch and column studies.J. Hazard. Mater.202141012467010.1016/j.jhazmat.2020.12467033272729
    [Google Scholar]
  19. WangP. HafshejaniB.A. WangD. An improved multilayer perceptron approach for detecting sugarcane yield production in IoT based smart agriculture.Microprocess. Microsyst.20218210382210.1016/j.micpro.2021.103822
    [Google Scholar]
  20. JinX. GuoJ. ShenY. LiuX. ZhaoC. Application of singular spectrum analysis and multilayer perceptron in the mid-long-term polar motion prediction.Adv. Space Res.20216893562357310.1016/j.asr.2021.06.039
    [Google Scholar]
  21. KumariS. RanjithE. GujjarA. NarasimmanS. Aadil Sha ZeelaniH.S. Comparative analysis of deep learning models for COVID-19 detection.Glob. Transit. Proc.20212255956510.1016/j.gltp.2021.08.030
    [Google Scholar]
  22. ChiccoD. JurmanG. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.BMC Genomics2020211610.1186/s12864‑019‑6413‑731898477
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230417090246
Loading
/content/journals/cmir/10.2174/1573405620666230417090246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test