Skip to content
2000
Volume 17, Issue 5
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background: Obstructive sleep apnea (OSA) is a chronic sleeping disorder. The analysis of the pharynx and its surrounding tissues can play a vital role in understanding the pathogenesis of OSA. Classification of the pharynx is a crucial step in the analysis of OSA. Methods: A visual analysis-based classifier is developed to classify the pharynx from MRI datasets. The classification pipeline consists of different stages, including pre-processing to select the initial candidates, extraction of categorical and numerical features to form a multidimensional features space, and a supervised classifier trained by using visual analytics and silhouette coefficient to classify the pharynx. Results: The pharynx is classified automatically and gives an approximately 86% Jaccard coefficient by evaluating the classifier on different MRI datasets. The expert’s knowledge can be utilized to select the optimal features and their corresponding weights during the training phase of the classifier. Conclusion: The proposed classifier is accurate and more efficient in terms of computational cost. It provides additional insight to better understand the influence of different features individually and collectively. It finds its applications in epidemiological studies where large datasets need to be analyzed.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405616666201118143935
2021-05-01
2025-06-01
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405616666201118143935
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test