Skip to content
2000
image of A Machine Learning Model Based on Multi-Phase Contrast-Enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer

Abstract

Background:

Muscle infiltration of bladder cancer has become the most important index to evaluate its prognosis. Machine learning is expected to accurately identify its muscle infiltration status on images.

Objective:

This study aimed to establish and validate a machine learning prediction model based on multi-phase contrast-enhanced CT (MCECT) for preoperatively evaluating the muscle-invasive status of bladder cancer.

Methods:

A retrospective study was conducted on bladder cancer patients who underwent surgical resection and pathological confirmation by MCECT scans. They were randomly divided into training and testing groups at a ratio of 8:2; we used an independent external testing set for verification. The radiomics features of lesions were extracted from MCECT images and radiomics signatures were established by dual sample T-test and least absolute shrinkage selection operator (LASSO) regression. Afterward, four machine learning classifier models were established. The receiver operating characteristic (ROC) curve, calibration, and decision curve analysis were employed to evaluate the efficiency of the model and analyze diagnostic performance using accuracy, precision, sensitivity, specificity, and F1-score.

Results:

The best predictive model was found to have logic regression as the classifier. The AUC value was 0.89 (5-fold cross-validation range 0.83-0.96) in the training group, 0.80 in the test group, and 0.87 in the external testing group. In the testing and external testing group, the diagnostic accuracy, precision, sensitivity, specificity, and F1-score were 0.759, 0.826, 0.863, 0.729, 0.785, and 0.794, 0.755, 0.953, 0.720, and 0.809, respectively.

Conclusion:

The machine learning model showed good accuracy in predicting the muscle infiltration status of bladder cancer before surgery.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056377754250304040058
2025-03-17
2025-04-02
The full text of this item is not currently available.

References

  1. Antoni S. Ferlay J. Soerjomataram I. Znaor A. Jemal A. Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 2017 71 1 96 108 10.1016/j.eururo.2016.06.010 27370177
    [Google Scholar]
  2. Wang H. Xu X. Zhang X. Liu Y. Ouyang L. Du P. Li S. Tian Q. Ling J. Guo Y. Lu H. Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer: A double-center study. Eur. Radiol. 2020 30 9 4816 4827 10.1007/s00330‑020‑06796‑8 32318846
    [Google Scholar]
  3. Dobruch J. Oszczudłowski M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas) 2021 57 8 749 10.3390/medicina57080749 34440955
    [Google Scholar]
  4. Babjuk M. Burger M. Capoun O. Cohen D. Compérat E.M. Dominguez Escrig J.L. Gontero P. Liedberg F. Masson-Lecomte A. Mostafid A.H. Palou J. van Rhijn B.W.G. Rouprêt M. Shariat S.F. Seisen T. Soukup V. Sylvester R.J. European association of urology guidelines on non–muscle-invasive bladder cancer (TA, T1, and carcinoma in situ). Eur. Urol. 2022 81 1 75 94 10.1016/j.eururo.2021.08.010 34511303
    [Google Scholar]
  5. Brocklehurst A. Varughese M. Birtle A. Bladder preservation for muscle-invasive bladder cancer with variant histology. Semin. Radiat. Oncol. 2023 33 1 62 69 10.1016/j.semradonc.2022.10.008 36517195
    [Google Scholar]
  6. Ucpinar B. Erbin A. Ayranci A. Caglar U. Alis D. Basal S. Sarilar O. Akbulut M.F. Prediction of recurrence in non-muscle invasive bladder cancer patients. Do patient characteristics matter? J. Buon. 2019 24 4 1659 1665 31646822
    [Google Scholar]
  7. Wong V.K. Ganeshan D. Jensen C.T. Devine C.E. Imaging and management of bladder cancer. Cancers (Basel) 2021 13 6 1396 10.3390/cancers13061396 33808614
    [Google Scholar]
  8. Alfred Witjes J. Max Bruins H. Carrión A. Cathomas R. Compérat E. Efstathiou J.A. Fietkau R. Gakis G. Lorch A. Martini A. Mertens L.S. Meijer R.P. Milowsky M.I. Neuzillet Y. Panebianco V. Redlef J. Rink M. Rouanne M. Thalmann G.N. Sæbjørnsen S. Veskimäe E. van der Heijden A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2023 guidelines. Eur. Urol. 2024 85 1 17 31 10.1016/j.eururo.2023.08.016 37858453
    [Google Scholar]
  9. Li J. Ma S. Wu D. Zhang Z. Chen Y. Liu B. Li C. Jia H. CT-based radiomics and cluster analysis for the prediction of local progression in stage I NSCLC patients treated with microwave ablation. iScience 2025 28 1 111552 10.1016/j.isci.2024.111552 39807170
    [Google Scholar]
  10. Akcay A. Yagci A.B. Celen S. Ozlulerden Y. Turk N.S. Ufuk F. VI-RADS score and tumor contact length in MRI: A potential method for the detection of muscle invasion in bladder cancer. Clin. Imaging 2021 77 25 36 10.1016/j.clinimag.2021.02.026 33639497
    [Google Scholar]
  11. Zhang G. Xu L. Zhao L. Mao L. Li X. Jin Z. Sun H. CT-based radiomics to predict the pathological grade of bladder cancer. Eur. Radiol. 2020 30 12 6749 6756 10.1007/s00330‑020‑06893‑8 32601949
    [Google Scholar]
  12. Wang H. Hu D. Yao H. Chen M. Li S. Chen H. Luo J. Feng Y. Guo Y. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur. Radiol. 2019 29 11 6182 6190 10.1007/s00330‑019‑06222‑8 31016445
    [Google Scholar]
  13. Cui Y. Sun Z. Liu X. Zhang X. Wang X. CT-based radiomics for the preoperative prediction of the muscle-invasive status of bladder cancer and comparison to radiologists’ assessment. Clin. Radiol. 2022 77 6 e473 e482 10.1016/j.crad.2022.02.019 35367051
    [Google Scholar]
  14. Zheng Z. Xu F. Gu Z. Yan Y. Xu T. Liu S. Yao X. Combining multiparametric MRI radiomics signature with the vesical imaging-reporting and data system (VI-RADS) score to preoperatively differentiate muscle invasion of bladder cancer. Front. Oncol. 2021 11 619893 10.3389/fonc.2021.619893 34055600
    [Google Scholar]
  15. Chen G. Fan X. Wang T. Zhang E. Shao J. Chen S. Zhang D. Zhang J. Guo T. Yuan Z. Tang H. Yu Y. Chen J. Wang X. A machine learning model based on MRI for the preoperative prediction of bladder cancer invasion depth. Eur. Radiol. 2023 33 12 8821 8832 10.1007/s00330‑023‑09960‑y 37470826
    [Google Scholar]
  16. Sylvester R.J. van der Meijden A.P.M. Oosterlinck W. Witjes J.A. Bouffioux C. Denis L. Newling D.W.W. Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 2006 49 3 466 477 10.1016/j.eururo.2005.12.031 16442208
    [Google Scholar]
  17. Sherif A. Jonsson M.N. Wiklund N.P. Treatment of muscle-invasive bladder cancer. Expert Rev. Anticancer Ther. 2007 7 9 1279 1283 10.1586/14737140.7.9.1279 17892428
    [Google Scholar]
  18. Huang X. Wang X. Lan X. Deng J. Lei Y. Lin F. The role of radiomics with machine learning in the prediction of muscle-invasive bladder cancer: A mini review. Front. Oncol. 2022 12 990176 10.3389/fonc.2022.990176 36059618
    [Google Scholar]
  19. Hensley P.J. Panebianco V. Pietzak E. Kutikov A. Vikram R. Galsky M.D. Shariat S.F. Roupret M. Kamat A.M. Contemporary staging for muscle-invasive bladder cancer: Accuracy and limitations. Eur. Urol. Oncol. 2022 5 4 403 411 10.1016/j.euo.2022.04.008 35581143
    [Google Scholar]
  20. Mariappan P. Zachou A. Grigor K.M. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur. Urol. 2010 57 5 843 849 10.1016/j.eururo.2009.05.047 19524354
    [Google Scholar]
  21. Svatek R.S. Shariat S.F. Novara G. Skinner E.C. Fradet Y. Bastian P.J. Kamat A.M. Kassouf W. Karakiewicz P.I. Fritsche H.M. Izawa J.I. Tilki D. Ficarra V. Volkmer B.G. Isbarn H. Dinney C.P. Discrepancy between clinical and pathological stage: External validation of the impact on prognosis in an international radical cystectomy cohort. BJU Int. 2011 107 6 898 904 10.1111/j.1464‑410X.2010.09628.x 21244604
    [Google Scholar]
  22. Turker P. Bostrom P.J. Wroclawski M.L. van Rhijn B. Kortekangas H. Kuk C. Mirtti T. Fleshner N.E. Jewett M.A. Finelli A. Kwast T.V. Evans A. Sweet J. Laato M. Zlotta A.R. Upstaging of urothelial cancer at the time of radical cystectomy: Factors associated with upstaging and its effect on outcome. BJU Int. 2012 110 6 804 811 10.1111/j.1464‑410X.2012.10939.x 22321341
    [Google Scholar]
  23. Yanagisawa T. Kawada T. von Deimling M. Bekku K. Laukhtina E. Rajwa P. Chlosta M. Pradere B. D’Andrea D. Moschini M. Karakiewicz P.I. Teoh J.Y.C. Miki J. Kimura T. Shariat S.F. Repeat transurethral resection for non–muscle-invasive bladder cancer: An updated systematic review and meta-analysis in the contemporary era. Eur. Urol. Focus 2024 10 1 41 56 10.1016/j.euf.2023.07.002 37495458
    [Google Scholar]
  24. Dobruch J. Daneshmand S. Fisch M. Lotan Y. Noon A.P. Resnick M.J. Shariat S.F. Zlotta A.R. Boorjian S.A. Gender and bladder cancer: A collaborative review of etiology, biology, and outcomes. Eur. Urol. 2016 69 2 300 310 10.1016/j.eururo.2015.08.037 26346676
    [Google Scholar]
  25. Barchetti G. Simone G. Ceravolo I. Salvo V. Campa R. Del Giudice F. De Berardinis E. Buccilli D. Catalano C. Gallucci M. Catto J.W.F. Panebianco V. Multiparametric MRI of the bladder: Inter-observer agreement and accuracy with the Vesical Imaging-Reporting and Data System (VI-RADS) at a single reference center. Eur. Radiol. 2019 29 10 5498 5506 10.1007/s00330‑019‑06117‑8 30887202
    [Google Scholar]
  26. Wang H. Luo C. Zhang F. Guan J. Li S. Yao H. Chen J. Luo J. Chen L. Guo Y. Multiparametric MRI for bladder cancer: Validation of VI-RADS for the detection of detrusor muscle invasion. Radiology 2019 291 3 668 674 10.1148/radiol.2019182506 31012814
    [Google Scholar]
  27. Metwally M.I. Zeed N.A. Hamed E.M. Elshetry A.S.F. Elfwakhry R.M. Alaa Eldin A.M. Sakr A. Aly S.A. Mosallam W. Ziada Y.M.A. Balata R. Harb O.A. Basha M.A.A. The validity, reliability, and reviewer acceptance of VI-RADS in assessing muscle invasion by bladder cancer: A multicenter prospective study. Eur. Radiol. 2021 31 9 6949 6961 10.1007/s00330‑021‑07765‑5 33606105
    [Google Scholar]
  28. Ueno Y. Tamada T. Takeuchi M. Sofue K. Takahashi S. Kamishima Y. Urase Y. Kido A. Hinata N. Harada K. Fujisawa M. Miyaji Y. Murakami T. VI-RADS: Multiinstitutional multireader diagnostic accuracy and interobserver agreement study. AJR Am. J. Roentgenol. 2021 216 5 1257 1266 10.2214/AJR.20.23604 32755215
    [Google Scholar]
  29. Xu X. Liu Y. Zhang X. Tian Q. Wu Y. Zhang G. Meng J. Yang Z. Lu H. Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdom. Radiol. (N.Y.) 2017 42 7 1896 1905 10.1007/s00261‑017‑1079‑6 28217825
    [Google Scholar]
  30. Xu X. Zhang X. Tian Q. Wang H. Cui L.B. Li S. Tang X. Li B. Dolz J. Ayed I. Liang Z. Yuan J. Du P. Lu H. Liu Y. Quantitative identification of nonmuscle‐invasive and muscle‐invasive bladder carcinomas: A multiparametric MRI radiomics analysis. J. Magn. Reson. Imaging 2019 49 5 1489 1498 10.1002/jmri.26327 30252978
    [Google Scholar]
  31. Lin P. Wen D. Chen L. Li X. Li S. Yan H. He R. Chen G. He Y. Yang H. A radiogenomics signature for predicting the clinical outcome of bladder urothelial carcinoma. Eur. Radiol. 2020 30 1 547 557 10.1007/s00330‑019‑06371‑w 31396730
    [Google Scholar]
  32. Cha K.H. Hadjiiski L.M. Cohan R.H. Chan H.P. Caoili E.M. Davenport M.S. Samala R.K. Weizer A.Z. Alva A. Kirova-Nedyalkova G. Shampain K. Meyer N. Barkmeier D. Woolen S. Shankar P.R. Francis I.R. Palmbos P. Diagnostic accuracy of CT for prediction of bladder cancer treatment response with and without computerized decision support. Acad. Radiol. 2019 26 9 1137 1145 10.1016/j.acra.2018.10.010 30424999
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056377754250304040058
Loading
/content/journals/cmir/10.2174/0115734056377754250304040058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test