Skip to content
2000
image of Machine-Learning Based Computed Tomography Radiomics Nomgram For Predicting Perineural Invasion In Gastric Cancer

Abstract

Objective:

The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods:

This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. A radiomics model was constructed utilizing the optimal among five machine learning filters, and a radiomics score (rad-score) was computed for each participant. A clinical model was built based on clinical factors identified through multivariate logistic regression. Independent clinical factors were combined with the rad-score to create a combined radiomics nomogram. The discrimination ability of the models was evaluated by receiver operating characteristic (ROC) curves and the DeLong test.

Results:

Independent predictive factors of the clinical model included tumor T stage, N stage, and tumor differentiation, with AUC values of 0.777 and 0.809 in the training and validation sets. The radiomics model was constructed using the support vector machine (SVM) classifier with the best AUC (0.875 in the training set and 0.826 in the validation set). The combined radiomics nomogram, which combines independent clinical predictors and the rad-score, demonstrated better predictive performance (AUC=0.889 in the training set; AUC=0.885 in the validation set).

Conclusion:

The nomogram integrating independent clinical predictors and CE-CT radiomics was constructed to predict PNI in GC. This model demonstrated favorable performance and could potentially assist in prognosis evaluation and clinical decision-making for GC patients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056323323250102073559
2025-01-13
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056323323250102073559/e15734056323323.html?itemId=/content/journals/cmir/10.2174/0115734056323323250102073559&mimeType=html&fmt=ahah

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  3. Ychou M. Boige V. Pignon J.P. Conroy T. Bouché O. Lebreton G. Ducourtieux M. Bedenne L. Fabre J.M. Saint-Aubert B. Genève J. Lasser P. Rougier P. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: An FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 2011 29 13 1715 1721 10.1200/JCO.2010.33.0597 21444866
    [Google Scholar]
  4. Ajani J.A. Bentrem D.J. Besh S. D’Amico T.A. Das P. Denlinger C. Fakih M.G. Fuchs C.S. Gerdes H. Glasgow R.E. Hayman J.A. Hofstetter W.L. Ilson D.H. Keswani R.N. Kleinberg L.R. Korn W.M. Lockhart A.C. Meredith K. Mulcahy M.F. Orringer M.B. Posey J.A. Sasson A.R. Scott W.J. Strong V.E. Varghese T.K. Jr Warren G. Washington M.K. Willett C. Wright C.D. McMillian N.R. Sundar H. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J. Natl. Compr. Canc. Netw. 2013 11 5 531 546 10.6004/jnccn.2013.0070 23667204
    [Google Scholar]
  5. Cats A. Jansen E.P.M. van Grieken N.C.T. Sikorska K. Lind P. Nordsmark M. Meershoek-Klein Kranenbarg E. Boot H. Trip A.K. Swellengrebel H.A.M. van Laarhoven H.W.M. Putter H. van Sandick J.W. van Berge Henegouwen M.I. Hartgrink H.H. van Tinteren H. van de Velde C.J.H. Verheij M. Van Coevorden F. Vanhoutvin S. Hulshof M.C.C.M. Loosveld O.J.L. Ten Tije A.B.J. Erdkamp F.L.G. Warmerdam F.A.R.M. Van der Peet D.L. Verheul H.M.W. Boerma D. Los M. Slot A. Houtsma D. Portielje J.E.A. Blaisse R.J.B. Spillenaar Bilgen E.J. Polée M.B. Geenen M.M. Braak J.P.B.M. Neelis K.J. Slingerland M. Jansen R.L.H. Buijsen J. Beeker A. Eijsbouts Q.A.J. Van Riel J.M.G.H. Rozema T. Van Spronsen D.J. Meerum Terwogt J.M. Tanis B.C. Van der Torren-Conze A.M.E. Van Hilligersberg R. Koopman M. Den Boer M.O. Creemers G-J. Van der Sangen M. Rentinck M.E.M. Van den Berg H.P. Jonkers G.J.P.M. Grootenboers D. Vulink A.J.E. Hovenga S. Van der Mijle H.C.J. Baars A. Haringhuizen A.W. Appels M.I.E. Rietbroek R.C. Hendriksen E.M. Legdeur M-C.J.C. Ten Bokkel Huinink D. Van Dobbenburgh O.A. Smit J.M. Van Bochove A. Veldhuis G-J. Muller E.W. Bonenkamp J.H.J. Braam P.M. De Boer J. Van Halteren H.K. Valster F.A.A. Imholz A.L.T. Van Dijk M.A. Van der Gaast A. Otten J.H-M.M.B. Ceha H.M. Glimelius B. Lagerbäck C. Perman M. Johnsson A. Borg D. Nielsen N.H. Piwowar A. Elmlund M. Hörberg H. Edlund P. Johansson B. Flygare P. Jespersen M.L. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): An international, open-label, randomised phase 3 trial. Lancet Oncol. 2018 19 5 616 628 10.1016/S1470‑2045(18)30132‑3 29650363
    [Google Scholar]
  6. Aurello P. Berardi G. Tierno S.M. Rampioni Vinciguerra G.L. Socciarelli F. Laracca G.G. Giulitti D. Pilozzi E. Ramacciato G. Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer. Am. J. Surg. 2017 213 4 748 753 10.1016/j.amjsurg.2016.05.022 27613269
    [Google Scholar]
  7. Tao Q Zhu W Zhao X Perineural invasion and postoperative adjuvant chemotherapy efficacy in patients with gastric cancer. Front. Oncol. 2020 21 530 10.3389/fonc.2020.00530
    [Google Scholar]
  8. Bilici A. Seker M. Ustaalioglu B.B.O. Kefeli U. Yildirim E. Yavuzer D. Aydin F.M. Salepci T. Oncel M. Gumus M. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection. Ann. Surg. Oncol. 2010 17 8 2037 2044 10.1245/s10434‑010‑1027‑y 20333555
    [Google Scholar]
  9. Lin JX Wang ZK Hong QQ Assessment of clinicopathological characteristics and development of an individualized prognostic model for patients with hepatoid adenocarcinoma of the stomach. JAMA Network Open 2021 4 10 e2128217 10.1001/jamanetworkopen.2021.28217
    [Google Scholar]
  10. Muduly D.K. Kar M. Sultania M. Shahin M. Patra S. Singh V. Imaduddin M. Mohakud S. Nayak H.K. Panigraphi M.K. Das Majumdar S.K. Parida D.K. Inclusion of perineural invasion with AJCC-TNM staging: Outcomes from a south asian cohort of curatively treated gastric cancer patients. J. Gastrointest. Cancer 2023 54 2 606 613 10.1007/s12029‑022‑00838‑8 35749055
    [Google Scholar]
  11. Gillies R.J. Kinahan P.E. Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016 278 2 563 577 10.1148/radiol.2015151169 26579733
    [Google Scholar]
  12. Lubner M.G. Smith A.D. Sandrasegaran K. Sahani D.V. Pickhardt P.J. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics 2017 37 5 1483 1503 10.1148/rg.2017170056 28898189
    [Google Scholar]
  13. Li M. Jin Y.M. Zhang Y.C. Zhao Y.L. Huang C.C. Liu S.M. Song B. Radiomics for predicting perineural invasion status in rectal cancer. World J. Gastroenterol. 2021 27 33 5610 5621 10.3748/wjg.v27.i33.5610 34588755
    [Google Scholar]
  14. Fan X Xie N Chen J Li T. Cao R. Yu H. He M. Wang Z. Wang Y. Liu H. Wang H. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer. Front Oncol. 2022 12 839621 10.3389/fonc.2022.839621
    [Google Scholar]
  15. Huang X. Shu J. Yan Y. Chen X. Yang C. Zhou T. Li M. Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage. Eur. J. Cancer 2021 155 227 235 10.1016/j.ejca.2021.06.053 34391055
    [Google Scholar]
  16. Mukherjee P Cintra M Huang C CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Imaging Can. 2020 2 3 e190039 10.1148/rycan.2020190039
    [Google Scholar]
  17. Jiang C. Yuan Y. Gu B. Ahn E. Kim J. Feng D. Huang Q. Song S. Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis. Clin. Radiol. 2023 78 9 687 696 10.1016/j.crad.2023.05.007 37365115
    [Google Scholar]
  18. Zheng H. Zheng Q. Jiang M. Han C. Yi J. Ai Y. Xie C. Jin X. Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer. Eur. J. Radiol. 2022 154 110393 10.1016/j.ejrad.2022.110393 35679700
    [Google Scholar]
  19. Gao X Cui J Wang L The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: A two-center study. Front Oncol. 2023 13 1205163 10.3389/fonc.2023.1205163
    [Google Scholar]
  20. Liu S.H. Hou X.Y. Zhang X.X. Liu G.W. Xin F.J. Wang J.G. Zhang D.L. Wang D.S. Lu Y. Establishment and validation of a predictive nomogram model for advanced gastric cancer with perineural invasion. Zhonghua Wei Chang Wai Ke Za Zhi 2020 23 11 1059 1066 10.3760/cma.j.cn.441530‑20200103‑00004 33212554
    [Google Scholar]
  21. Li J. Xu S. Wang Y. Fang M. Ma F. Xu C. Li H. Spectral CT-based nomogram for preoperative prediction of perineural invasion in locally advanced gastric cancer: A prospective study. Eur. Radiol. 2023 33 7 5172 5183 10.1007/s00330‑023‑09464‑9 36826503
    [Google Scholar]
  22. Li C. Wang M. Cheng X. Jiang Y. Xiao H. Nerve invasion as an independent predictor of poor prognosis in gastric cancer after curative resection. Medicine 2022 101 33 e30084 10.1097/MD.0000000000030084 35984131
    [Google Scholar]
  23. Tianhang L. Guoen F. Jianwei B. Liye M. The effect of perineural invasion on overall survival in patients with gastric carcinoma. J. Gastrointest. Surg. 2008 12 7 1263 1267 10.1007/s11605‑008‑0529‑4 18463928
    [Google Scholar]
  24. Yang K Dan YQ Choi YY The impact of nerve involvement on the prognosis of gastric cancer patients with curative gastrectomy: An international multicenter analysis. Dis. markers 2021 2021 1 8870562 10.1155/2021/8870562
    [Google Scholar]
  25. Ghezzo S. Mapelli P. Bezzi C. Samanes Gajate A.M. Brembilla G. Gotuzzo I. Russo T. Preza E. Cucchiara V. Ahmed N. Neri I. Mongardi S. Freschi M. Briganti A. De Cobelli F. Gianolli L. Scifo P. Picchio M. Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2023 50 8 2548 2560 10.1007/s00259‑023‑06187‑3 36933074
    [Google Scholar]
  26. Bourbonne V Vallières M Lucia F MRI-derived radiomics to guide post-operative management for high-risk prostate cancer. Front Oncol 2019 9 807 10.3389/fonc.2019.00807
    [Google Scholar]
  27. Shayesteh S. Nazari M. Salahshour A. Sandoughdaran S. Hajianfar G. Khateri M. Yaghobi Joybari A. Jozian F. Fatehi Feyzabad S.H. Arabi H. Shiri I. Zaidi H. Treatment response prediction using MRI‐based pre‐, post‐, and delta‐radiomic features and machine learning algorithms in colorectal cancer. Med. Phys. 2021 48 7 3691 3701 10.1002/mp.14896 33894058
    [Google Scholar]
  28. van Griethuysen J.J.M. Fedorov A. Parmar C. Hosny A. Aucoin N. Narayan V. Beets-Tan R.G.H. Fillion-Robin J.C. Pieper S. Aerts H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017 77 21 e104 e107 10.1158/0008‑5472.CAN‑17‑0339 29092951
    [Google Scholar]
  29. Chen J. Lu S. Mao Y. Tan L. Li G. Gao Y. Tan P. Huang D. Zhang X. Qiu Y. Liu Y. An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: A multi-cohort study. Eur. Radiol. 2022 32 3 1548 1557 10.1007/s00330‑021‑08292‑z 34665315
    [Google Scholar]
  30. Cui Y. Zhang J. Li Z. Wei K. Lei Y. Ren J. Wu L. Shi Z. Meng X. Yang X. Gao X. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study. EClinicalMedicine 2022 46 10.1016/j.eclinm.2022.101348
    [Google Scholar]
  31. Jiang Y. Wang H. Wu J. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann. Oncol. 2020 31 6 760 768 10.1016/j.annonc.2020.03.295 32240794
    [Google Scholar]
  32. Lazăr D.C. Avram M.F. Romoșan I. Cornianu M. Tăban S. Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J. Gastroenterol. 2018 24 32 3583 3616 10.3748/wjg.v24.i32.3583 30166856
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056323323250102073559
Loading
/content/journals/cmir/10.2174/0115734056323323250102073559
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test