Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods

This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. A radiomics model was constructed utilizing the optimal among five machine learning filters, and a radiomics score (rad-score) was computed for each participant. A clinical model was built based on clinical factors identified through multivariate logistic regression. Independent clinical factors were combined with the rad-score to create a combined radiomics nomogram. The discrimination ability of the models was evaluated by receiver operating characteristic (ROC) curves and the DeLong test.

Results

Independent predictive factors of the clinical model included tumor T stage, N stage, and tumor differentiation, with AUC values of 0.777 and 0.809 in the training and validation sets. The radiomics model was constructed using the support vector machine (SVM) classifier with the best AUC (0.875 in the training set and 0.826 in the validation set). The combined radiomics nomogram, which combines independent clinical predictors and the rad-score, demonstrated better predictive performance (AUC=0.889 in the training set; AUC=0.885 in the validation set).

Conclusion

The nomogram integrating independent clinical predictors and CE-CT radiomics was constructed to predict PNI in GC. This model demonstrated favorable performance and could potentially assist in prognosis evaluation and clinical decision-making for GC patients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056323323250102073559
2025-01-13
2025-05-30
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  3. YchouM. BoigeV. PignonJ.P. ConroyT. BouchéO. LebretonG. DucourtieuxM. BedenneL. FabreJ.M. Saint-AubertB. GenèveJ. LasserP. RougierP. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: An FNCLCC and FFCD multicenter phase III trial.J. Clin. Oncol.201129131715172110.1200/JCO.2010.33.059721444866
    [Google Scholar]
  4. AjaniJ.A. BentremD.J. BeshS. D’AmicoT.A. DasP. DenlingerC. FakihM.G. FuchsC.S. GerdesH. GlasgowR.E. HaymanJ.A. HofstetterW.L. IlsonD.H. KeswaniR.N. KleinbergL.R. KornW.M. LockhartA.C. MeredithK. MulcahyM.F. OrringerM.B. PoseyJ.A. SassonA.R. ScottW.J. StrongV.E. VargheseT.K.Jr WarrenG. WashingtonM.K. WillettC. WrightC.D. McMillianN.R. SundarH. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines.J. Natl. Compr. Canc. Netw.201311553154610.6004/jnccn.2013.007023667204
    [Google Scholar]
  5. CatsA. JansenE.P.M. van GriekenN.C.T. SikorskaK. LindP. NordsmarkM. Meershoek-Klein KranenbargE. BootH. TripA.K. SwellengrebelH.A.M. van LaarhovenH.W.M. PutterH. van SandickJ.W. van Berge HenegouwenM.I. HartgrinkH.H. van TinterenH. van de VeldeC.J.H. VerheijM. Van CoevordenF. VanhoutvinS. HulshofM.C.C.M. LoosveldO.J.L. Ten TijeA.B.J. ErdkampF.L.G. WarmerdamF.A.R.M. Van der PeetD.L. VerheulH.M.W. BoermaD. LosM. SlotA. HoutsmaD. PortieljeJ.E.A. BlaisseR.J.B. Spillenaar BilgenE.J. PoléeM.B. GeenenM.M. BraakJ.P.B.M. NeelisK.J. SlingerlandM. JansenR.L.H. BuijsenJ. BeekerA. EijsboutsQ.A.J. Van RielJ.M.G.H. RozemaT. Van SpronsenD.J. Meerum TerwogtJ.M. TanisB.C. Van der Torren-ConzeA.M.E. Van HilligersbergR. KoopmanM. Den BoerM.O. CreemersG-J. Van der SangenM. RentinckM.E.M. Van den BergH.P. JonkersG.J.P.M. GrootenboersD. VulinkA.J.E. HovengaS. Van der MijleH.C.J. BaarsA. HaringhuizenA.W. AppelsM.I.E. RietbroekR.C. HendriksenE.M. LegdeurM-C.J.C. Ten Bokkel HuininkD. Van DobbenburghO.A. SmitJ.M. Van BochoveA. VeldhuisG-J. MullerE.W. BonenkampJ.H.J. BraamP.M. De BoerJ. Van HalterenH.K. ValsterF.A.A. ImholzA.L.T. Van DijkM.A. Van der GaastA. OttenJ.H-M.M.B. CehaH.M. GlimeliusB. LagerbäckC. PermanM. JohnssonA. BorgD. NielsenN.H. PiwowarA. ElmlundM. HörbergH. EdlundP. JohanssonB. FlygareP. JespersenM.L. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): An international, open-label, randomised phase 3 trial.Lancet Oncol.201819561662810.1016/S1470‑2045(18)30132‑329650363
    [Google Scholar]
  6. AurelloP. BerardiG. TiernoS.M. Rampioni VinciguerraG.L. SocciarelliF. LaraccaG.G. GiulittiD. PilozziE. RamacciatoG. Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer.Am. J. Surg.2017213474875310.1016/j.amjsurg.2016.05.02227613269
    [Google Scholar]
  7. TaoQ ZhuW ZhaoX Perineural invasion and postoperative adjuvant chemotherapy efficacy in patients with gastric cancer.Front. Oncol.20202153010.3389/fonc.2020.00530
    [Google Scholar]
  8. BiliciA. SekerM. UstaaliogluB.B.O. KefeliU. YildirimE. YavuzerD. AydinF.M. SalepciT. OncelM. GumusM. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection.Ann. Surg. Oncol.20101782037204410.1245/s10434‑010‑1027‑y20333555
    [Google Scholar]
  9. LinJX WangZK HongQQ Assessment of clinicopathological characteristics and development of an individualized prognostic model for patients with hepatoid adenocarcinoma of the stomach.JAMA Network Open2021410e212821710.1001/jamanetworkopen.2021.28217
    [Google Scholar]
  10. MudulyD.K. KarM. SultaniaM. ShahinM. PatraS. SinghV. ImaduddinM. MohakudS. NayakH.K. PanigraphiM.K. Das MajumdarS.K. ParidaD.K. Inclusion of perineural invasion with AJCC-TNM staging: Outcomes from a south asian cohort of curatively treated gastric cancer patients.J. Gastrointest. Cancer202354260661310.1007/s12029‑022‑00838‑835749055
    [Google Scholar]
  11. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  12. LubnerM.G. SmithA.D. SandrasegaranK. SahaniD.V. PickhardtP.J. CT texture analysis: Definitions, applications, biologic correlates, and challenges.Radiographics20173751483150310.1148/rg.201717005628898189
    [Google Scholar]
  13. LiM. JinY.M. ZhangY.C. ZhaoY.L. HuangC.C. LiuS.M. SongB. Radiomics for predicting perineural invasion status in rectal cancer.World J. Gastroenterol.202127335610562110.3748/wjg.v27.i33.561034588755
    [Google Scholar]
  14. FanX XieN ChenJ LiT. CaoR. YuH. HeM. WangZ. WangY. LiuH. WangH. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer.Front Oncol.20221283962110.3389/fonc.2022.839621
    [Google Scholar]
  15. HuangX. ShuJ. YanY. ChenX. YangC. ZhouT. LiM. Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage.Eur. J. Cancer202115522723510.1016/j.ejca.2021.06.05334391055
    [Google Scholar]
  16. MukherjeeP CintraM HuangC CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma.Imaging Can.202023e19003910.1148/rycan.2020190039
    [Google Scholar]
  17. JiangC. YuanY. GuB. AhnE. KimJ. FengD. HuangQ. SongS. Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis.Clin. Radiol.202378968769610.1016/j.crad.2023.05.00737365115
    [Google Scholar]
  18. ZhengH. ZhengQ. JiangM. HanC. YiJ. AiY. XieC. JinX. Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer.Eur. J. Radiol.202215411039310.1016/j.ejrad.2022.11039335679700
    [Google Scholar]
  19. GaoX CuiJ WangL The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: A two-center study.Front Oncol.202313120516310.3389/fonc.2023.1205163
    [Google Scholar]
  20. LiuS.H. HouX.Y. ZhangX.X. LiuG.W. XinF.J. WangJ.G. ZhangD.L. WangD.S. LuY. Establishment and validation of a predictive nomogram model for advanced gastric cancer with perineural invasion.Zhonghua Wei Chang Wai Ke Za Zhi202023111059106610.3760/cma.j.cn.441530‑20200103‑0000433212554
    [Google Scholar]
  21. LiJ. XuS. WangY. FangM. MaF. XuC. LiH. Spectral CT-based nomogram for preoperative prediction of perineural invasion in locally advanced gastric cancer: A prospective study.Eur. Radiol.20233375172518310.1007/s00330‑023‑09464‑936826503
    [Google Scholar]
  22. LiC. WangM. ChengX. JiangY. XiaoH. Nerve invasion as an independent predictor of poor prognosis in gastric cancer after curative resection.Medicine202210133e3008410.1097/MD.000000000003008435984131
    [Google Scholar]
  23. TianhangL. GuoenF. JianweiB. LiyeM. The effect of perineural invasion on overall survival in patients with gastric carcinoma.J. Gastrointest. Surg.20081271263126710.1007/s11605‑008‑0529‑418463928
    [Google Scholar]
  24. YangK DanYQ ChoiYY The impact of nerve involvement on the prognosis of gastric cancer patients with curative gastrectomy: An international multicenter analysis.Dis. markers202120211887056210.1155/2021/8870562
    [Google Scholar]
  25. GhezzoS. MapelliP. BezziC. Samanes GajateA.M. BrembillaG. GotuzzoI. RussoT. PrezaE. CucchiaraV. AhmedN. NeriI. MongardiS. FreschiM. BrigantiA. De CobelliF. GianolliL. ScifoP. PicchioM. Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer.Eur. J. Nucl. Med. Mol. Imaging20235082548256010.1007/s00259‑023‑06187‑336933074
    [Google Scholar]
  26. BourbonneV VallièresM LuciaF MRI-derived radiomics to guide post-operative management for high-risk prostate cancer.Front Oncol2019980710.3389/fonc.2019.00807
    [Google Scholar]
  27. ShayestehS. NazariM. SalahshourA. SandoughdaranS. HajianfarG. KhateriM. Yaghobi JoybariA. JozianF. Fatehi FeyzabadS.H. ArabiH. ShiriI. ZaidiH. Treatment response prediction using MRI‐based pre‐, post‐, and delta‐radiomic features and machine learning algorithms in colorectal cancer.Med. Phys.20214873691370110.1002/mp.1489633894058
    [Google Scholar]
  28. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ.C. PieperS. AertsH.J.W.L. Computational radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑033929092951
    [Google Scholar]
  29. ChenJ. LuS. MaoY. TanL. LiG. GaoY. TanP. HuangD. ZhangX. QiuY. LiuY. An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: A multi-cohort study.Eur. Radiol.20223231548155710.1007/s00330‑021‑08292‑z34665315
    [Google Scholar]
  30. CuiY. ZhangJ. LiZ. WeiK. LeiY. RenJ. WuL. ShiZ. MengX. YangX. GaoX. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.EClinicalMedicine20224610.1016/j.eclinm.2022.101348
    [Google Scholar]
  31. JiangY. WangH. WuJ. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer.Ann. Oncol.202031676076810.1016/j.annonc.2020.03.29532240794
    [Google Scholar]
  32. LazărD.C. AvramM.F. RomoșanI. CornianuM. TăbanS. GoldișA. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer.World J. Gastroenterol.201824323583361610.3748/wjg.v24.i32.358330166856
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056323323250102073559
Loading
/content/journals/cmir/10.2174/0115734056323323250102073559
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test