Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Colon diseases are major global health issues that often require early detection and correct diagnosis to be effectively treated. Deep learning approaches and recent developments in medical imaging have demonstrated promise in increasing diagnostic accuracy.

Objective

This work suggests that a Convolutional Neural Network (CNN) model paired with other models can detect different gastrointestinal (GI) abnormalities or diseases from endoscopic images the fusion of residual blocks, including alpha dropouts (αDO) and auxiliary fusing layers.

Methods

To automatically diagnose colon disorders from medical images, this work explores the use of a fused deeplearning model that incorporates the EfficientNetB0, MobileNetV2, and ResNet50V2 architectures. By integrating these features, the fused model aims to improve the classification accuracy and robustness for various colon diseases. The proposed model incorporates an auxiliary fusion layer and a fusion residual block. By combining diverse features through an auxiliary fusion layer, the network can create more comprehensive and richer representations, capturing intricate patterns that might be missed by single-source processing. The fusion residual block incorporates residual connections, which help mitigate the vanishing gradient problem. By adding the input of the block directly to its output, these connections facilitate better gradient flow during backpropagation, allowing for deeper and more stable training. A wide range of endoscopic images are used to assess the proposed model, offering an accurate depiction of various disease scenarios.

Results

The proposed model, with an auxiliary fusion layer and residual blocks, exhibited an enormous reduction in overfitting and performance saturation. The proposed model achieved an impressive 98.03% training accuracy and 97.90% validation accuracy after evaluation, outperforming the majority of typically trained DCNNs in terms of efficiency and accuracy.

Conclusion

The proposed method developed a lightweight model that correctly identifies disorders of the gastrointestinal (GI) tract by combining advanced techniques, including feature fusion, residual learning, and self-normalization.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056353246241209060804
2025-01-02
2025-12-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056353246.html?itemId=/content/journals/cmir/10.2174/0115734056353246241209060804&mimeType=html&fmt=ahah

References

  1. Thomas AbrahamJ.V. MuralidharA. SathyarajasekaranK. IlakiyaselvanN. A deep-learning approach for identifying and classifying digestive diseases.Symmetry202315237910.3390/sym15020379
    [Google Scholar]
  2. UKEssays: Functions and parts of the digestive and urinary systems.2023Available from: https://www.ukessays.com/assignments/digestive-and-urinary-systems.php
  3. Saint Luke's.: What is colon and rectal cancer (Colorectal Cancer)?2023Available from: https://www.saintlukeskc.org/health -library/what-colon-and-rectal-cancer-colorectal-cancer
  4. KumarR. AnandV. GuptaS. GanzhaM. PaprzyckiM. Automatic identification of cataract by analyzing fundus images using VGG19 model.In International Conference on Big Data AnalyticsCham Springer Nature Switzerland2022
    [Google Scholar]
  5. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma1503080435160749
    [Google Scholar]
  6. SharmaB. KoundalD. Cattle health monitoring system using wireless sensor network: A survey from innovation perspective.IET Wirel. Sens. Syst.20188414315110.1049/iet‑wss.2017.0060
    [Google Scholar]
  7. Cancer Research UK.: Half a million lives saved in 30 years thanks to cancer research.2023Available from: https://news.cancerresearchuk.org/2013/07/09/half-a-million-lives-saved-in-30-years-thanks-to-cancer-research/(2023)
  8. ElwaliN.E. JarrahO. AlzahraniS. AlharbiM. AlhejailyA. AlsharmA. ElhassanM. Colorectal cancer in Saudi Arabia: The way forward.Asian Pac. J. Cancer Prev.2023241131910.31557/APJCP.2023.24.1.1336708547
    [Google Scholar]
  9. ZouY. PitchumoniC.S. Obesity, obesities and gastrointestinal cancers.Dis. Mon.2023691210159210.1016/j.disamonth.2023.10159237308362
    [Google Scholar]
  10. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics.CA Cancer J. Clin.202373323325410.3322/caac.2177236856579
    [Google Scholar]
  11. UchikovP. KhalidU. KraevK. HristovB. KraevaM. TenchevT. ChakarovD. SandevaM. DragushevaS. TanevaD. BatashkiA. Artificial intelligence in the diagnosis of colorectal cancer: A literature review.Diagnostics202414552810.3390/diagnostics1405052838472999
    [Google Scholar]
  12. Francis Jesmar Montalbo.: WCE curated colon disease dataset deep learning.2023Available from: https://www.kaggle.com/datasets/francismon/curated-colon-dataset-for-deep-learning
  13. SundasA. BadotraS. BharanyS. AlmogrenA. Tag-ElDinE.M. RehmanA.U. HealthGuard: An intelligent healthcare system security framework based on machine learning.Sustainability202214191193410.3390/su141911934
    [Google Scholar]
  14. BorgliH. ThambawitaV. SmedsrudP.H. HicksS. JhaD. EskelandS.L. RandelK.R. PogorelovK. luxM. NguyenD.T.D. JohansenD. HyperKvasir, a comprehensive multiclass image and video dataset for gastrointestinal endoscopy.Sci. Data20207128310.1038/s41597‑020‑00622‑y32859981
    [Google Scholar]
  15. SongE.M. ParkB. HaC.A. HwangS.W. ParkS.H. YangD.H. YeB.D. MyungS.J. YangS.K. KimN. ByeonJ.S. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model.Sci. Rep.20201013010.1038/s41598‑019‑56697‑031913337
    [Google Scholar]
  16. ShinY. BalasinghamI. Comparison of handcraft feature-based SVM and CNN-based deep learning framework for automatic polyp classification.39th annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)Jeju, Korea (South), 11-15 July 2017, pp. 3277-3280.
    [Google Scholar]
  17. PogorelovK. RandelK.R. GriwodzC. EskelandS.L. de LangeT. JohansenD. SpampinatoC. Dang-NguyenD.T. Kvasir: A multiclass image dataset for computer-aided gastrointestinal disease detection.Proceedings of the 8th ACM on Multimedia Systems Conference164169201710.1145/3083187.3083212
    [Google Scholar]
  18. SuttonR.T. Zai͏̈aneO.R. GoebelR. BaumgartD.C. Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images.Sci. Rep.2022121274810.1038/s41598‑022‑06726‑235177717
    [Google Scholar]
  19. PoudelS. KimY.J. VoD.M. LeeS.W. Colorectal disease classification using efficiently scaled dilation in convolutional neural network.IEEE Access20208992279923810.1109/ACCESS.2020.2996770
    [Google Scholar]
  20. OzawaT. IshiharaS. FujishiroM. KumagaiY. ShichijoS. TadaT. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks.Therapeutic advances in gastroenterology202013910.1177/1756284820910659
    [Google Scholar]
  21. FanS. XuL. FanY. WeiK. LiL. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images.Phys. Med. Biol.2018631616500110.1088/1361‑6560/aad51c30033931
    [Google Scholar]
  22. Narasimha RajuA.S. JayavelK. RajalakshmiT. ColoRectalCADx: Expeditious recognition of colorectal cancer with integrated convolutional neural networks and visual explanations using mixed dataset evidence.Comput. Math. Methods Med.20222022112710.1155/2022/872395736404909
    [Google Scholar]
  23. YogapriyaJ. ChandranV. SumithraM.G. AnithaP. JenopaulP. Suresh Gnana DhasC. Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model.Comput. Math. Methods Med.20212021111210.1155/2021/594043334545292
    [Google Scholar]
  24. MahapatraD. SchuefflerP. TielbeekJ.A.W. BuhmannJ.M. VosF.M. A supervised learning approach for Crohn’s disease detection using higher-order image statistics and a novel shape asymmetry measure.J. Digit. Imaging201326592093110.1007/s10278‑013‑9576‑923392736
    [Google Scholar]
  25. WeiZ. ZhangW. LiuJ. WangS. YaoJ. SummersR.M. Computer-aided detection of colitis on computed tomography using a visual codebook.IEEE 10th International Symposium on Biomedical Imaging2013141144
    [Google Scholar]
  26. ZhangR. ZhengY. MakT.W.C. YuR. WongS.H. LauJ.Y.W. PoonC.C.Y. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from the nonmedical domain.IEEE J. Biomed. Health Inform.2017211414710.1109/JBHI.2016.263566228114040
    [Google Scholar]
  27. AlammariA. IslamA.R. OhJ. TavanapongW. WongJ. De GroenP.C. Classification of ulcerative colitis severity in colonoscopy videos using CNN.Proceedings of the 9th international conference on information management and engineering139144201710.1145/3149572.3149613
    [Google Scholar]
  28. NadeemS. TahirM.A. NaqviS.S.A. ZaidM. Ensemble of texture and deep learning features for finding abnormalities in the gastro-intestinal tract.Proceedings, Part II 10469478Springer International Publishing201810.1007/978‑3‑319‑98446‑9_44
    [Google Scholar]
  29. WimmerG. VécseiA. HäfnerM. UhlA. Fisher encoding of convolutional neural network features for endoscopic image classification.J. Med. Imaging (Bellingham)201853110.1117/1.JMI.5.3.03450430840751
    [Google Scholar]
  30. WangP. XiaoX. Glissen BrownJ.R. BerzinT.M. TuM. XiongF. HuX. LiuP. SongY. ZhangD. YangX. LiL. HeJ. YiX. LiuJ. LiuX. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.Nat. Biomed. Eng.201821074174810.1038/s41551‑018‑0301‑331015647
    [Google Scholar]
  31. PonzioF. MaciiE. FicarraE. Di CataldoS. Colorectal cancer classification using deep convolutional networks.Proceedings of the 11th international joint conference on biomedical engineering systems and technologiesVol. 258662017
    [Google Scholar]
  32. UrbanG. TripathiP. AlkayaliT. MittalM. JalaliF. KarnesW. BaldiP. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy.Gastroenterology2018155410691078.e810.1053/j.gastro.2018.06.03729928897
    [Google Scholar]
  33. YuanY. QinW. IbragimovB. HanB. XingL. RIIS-DenseNet: rotation-invariant and image similarity constrained densely connected convolutional network for polyp detection. In Medical Image Computing and Computer Assisted Intervention–MICCAI2018Springer International Publishing21st International Conference, Granada, Spain, September 16-20, Proceedings, Part II 11 620628
    [Google Scholar]
  34. WanN. WeinbergD. LiuT.Y. NiehausK. AriaziE.A. DelubacD. KannanA. WhiteB. BaileyM. BertinM. BoleyN. BowenD. CreggJ. DrakeA.M. EnnisR. FransenS. GafniE. HansenL. LiuY. OtteG.L. PecsonJ. RiceB. SandersonG.E. SharmaA. St JohnJ. TangC. TzouA. YoungL. PutchaG. HaqueI.S. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA.BMC Cancer201919183210.1186/s12885‑019‑6003‑831443703
    [Google Scholar]
  35. WongW.N. WongY.K. ChanW.H. Classification of gastrointestinal diseases using deep transfer learning.2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)156161IEEE202210.1109/ICICyTA57421.2022.10038047
    [Google Scholar]
  36. SarwindaD. ParadisaR.H. BustamamA. AnggiaP. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer.Procedia Comput. Sci.202117942343110.1016/j.procs.2021.01.025
    [Google Scholar]
  37. LiaoR. QiK. CheD. ZengT.H. Exploration of the possibility of early diagnosis for digestive diseases using deep learning techniques.2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)23432350IEEE202010.1109/BIBM49941.2020.9313557
    [Google Scholar]
  38. KhorasaniH.M. UsefiH. Peña-CastilloL. Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning.Sci. Rep.20201011374410.1038/s41598‑020‑70583‑032792678
    [Google Scholar]
  39. MukhtorovD. RakhmonovaM. MuksimovaS. ChoY.I. Endoscopic image classification based on explainable deep learning.Sensors2023236317610.3390/s2306317636991887
    [Google Scholar]
  40. ZhangL. MaoR. LauC.T. ChungW.C. ChanJ.C.P. LiangF. ZhaoC. ZhangX. BianZ. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods.Sci. Rep.2022121996210.1038/s41598‑022‑14048‑635705632
    [Google Scholar]
  41. KumarR. AnandV. GuptaS. Enhancement of diagnostic accuracy of colon diseases using multi-class classification technique and endoscopic images.2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT)202418819310.1109/DICCT61038.2024.10533146
    [Google Scholar]
  42. GuoH. SomayajulaS.A. HosseiniR. XieP. Improving image classification of gastrointestinal endoscopy using curriculum self-supervised learning.Sci. Rep.2024141610010.1038/s41598‑024‑53955‑838480815
    [Google Scholar]
  43. AlyamaniH.J. Enhancing ulcerative colitis diagnosis: A multi-level classification approach with deep learning.CMES-Computer Modeling in Engineering & Sciences2024140110.32604/cmes.2024.047756
    [Google Scholar]
  44. ChouC.K. KarmakarR. TsaoY.M. JieL.W. MukundanA. HuangC.W. ChenT.H. KoC.Y. WangH.C. Evaluation of spectrum-aided visual enhancer (SAVE) in esophageal cancer detection using yolo frameworks.Diagnostics20241411112910.3390/diagnostics1411112938893655
    [Google Scholar]
  45. FangY.J. HuangC.W. KarmakarR. MukundanA. TsaoY.M. YangK.Y. WangH.C. Assessment of narrow-band imaging algorithm for video capsule endoscopy based on decorrelated color space for esophageal cancer: Part ii, detection and classification of esophageal cancer.Cancers202416357210.3390/cancers1603057238339322
    [Google Scholar]
  46. BousisD. VerrasG.I. BouchagierK. AntzoulasA. PanagiotopoulosI. KatiniotiA. KehagiasD. KaplanisC. KotisK. AnagnostopoulosC.N. MulitaF. The role of deep learning in diagnosing colorectal cancer.Gastroenterology Review/Przegląd Gastroenterologiczny202318110.5114/pg.2023.129494
    [Google Scholar]
  47. ChlorogiannisD.D. VerrasG.I. TzelepiV. ChlorogiannisA. ApostolosA. KotisK. AnagnostopoulosC.N. AntzoulasA. VailasM. SchizasD. MulitaF. Tissue classification and diagnosis of colorectal cancer histopathology images using deep learning algorithms.Is the time ripe for clinical practice implementation? Gastroenterology Review/Przegląd Gastroenterologiczny2023181
    [Google Scholar]
  48. SilvaJ. HistaceA. RomainO. DrayX. GranadoB. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer.Int. J. CARS20149228329310.1007/s11548‑013‑0926‑324037504
    [Google Scholar]
  49. Simula.: Kvasir v2 dataset.2023Available from: https://datasets.simula.no/kvasir/
/content/journals/cmir/10.2174/0115734056353246241209060804
Loading
/content/journals/cmir/10.2174/0115734056353246241209060804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test