Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study aimed to establish a model based on Multi-detector Computed Tomography (MDCT), 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT), and clinical features for predicting different growth patterns of preoperative Invasive Adenocarcinoma (IAC).

Methods

This retrospective study included 357 patients diagnosed with IAC who underwent surgical treatment. According to pathological subtypes, IAC was classified into low-risk growth patterns (lepidic, acinar) and high-risk growth patterns (papillary, micropapillary, and solid). The clinical features of patients, preoperative MDCT, and 18F-FDG PET imaging characteristics were collected. Logistic regression analysis was used to determine the independent risk factors for the high-risk growth pattern of IAC and construct models for predicting the high-/low-risk growth patterns of IAC. Receiver operating characteristics and calibration curves were plotted and Decision Curve Analysis (DCA) was performed to evaluate the performance and clinical benefits of the models, respectively.

Results

Gender, tumor location, size, spiculation, and SUVavg were independent risk factors for high-risk growth patterns of IAC. The PET/CT imaging-clinical characteristics combined model could well identify high-/low-risk growth patterns of IAC (AUC=0.789), which outperformed the CT model (AUC=0.689, =0.0012), PET model (AUC=0.742, =0.0022), and clinical model (AUC=0.607, <0.0001). The calibration curve indicated good coherence between all model predictions and actual observations in both training and test sets (>0.05). DCA revealed the highest clinical benefit of PET/CT imaging-clinical characteristics combined model in identifying the high-risk growth pattern of IAC.

Conclusion

The PET/CT imaging-clinical model based on multiphase MDCT features, 18F-FDG PET features, and clinical characteristics could predict the high-risk growth pattern of IAC preoperatively, aiding clinicians in deciding personalized treatment strategies.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056352795241030102554
2024-01-01
2025-05-13
The full text of this item is not currently available.

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. TravisW.D. BrambillaE. NoguchiM. NicholsonA.G. GeisingerK.R. YatabeY. BeerD.G. PowellC.A. RielyG.J. Van SchilP.E. GargK. AustinJ.H.M. AsamuraH. RuschV.W. HirschF.R. ScagliottiG. MitsudomiT. HuberR.M. IshikawaY. JettJ. Sanchez-CespedesM. SculierJ.P. TakahashiT. TsuboiM. VansteenkisteJ. WistubaI. YangP.C. AberleD. BrambillaC. FliederD. FranklinW. GazdarA. GouldM. HasletonP. HendersonD. JohnsonB. JohnsonD. KerrK. KuriyamaK. LeeJ.S. MillerV.A. PetersenI. RoggliV. RosellR. SaijoN. ThunnissenE. TsaoM. YankelewitzD. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma.J. Thorac. Oncol.20116224428510.1097/JTO.0b013e318206a22121252716
    [Google Scholar]
  3. WarthA. MuleyT. MeisterM. StenzingerA. ThomasM. SchirmacherP. SchnabelP.A. BudcziesJ. HoffmannH. WeichertW. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival.J. Clin. Oncol.201230131438144610.1200/JCO.2011.37.218522393100
    [Google Scholar]
  4. Campos-ParraA.D. AvilésA. Contreras-ReyesS. Rojas-MarínC.E. Sánchez-ReyesR. Borbolla-EscobozaR.J. ArrietaO. Relevance of the novel IASLC/ATS/ERS classification of lung adenocarcinoma in advanced disease.Eur. Respir. J.20144351439144710.1183/09031936.0013881324435003
    [Google Scholar]
  5. YangF. ChenK. LiaoY. LiX. SunK. BaoD. WangJ. Risk factors of recurrence for resected T1aN0M0 invasive lung adenocarcinoma: A clinicopathologic study of 177 patients.World J. Surg. Oncol.201412128510.1186/1477‑7819‑12‑28525216551
    [Google Scholar]
  6. ChoeJ. LeeS.M. DoK.H. KimS. ChoiS. LeeJ.G. SeoJ.B. Outcome prediction in resectable lung adenocarcinoma patients: Value of CT radiomics.Eur. Radiol.20203094952496310.1007/s00330‑020‑06872‑z32356158
    [Google Scholar]
  7. ZhaoZ.R. XiS.Y. LiW. SituD.R. ChenK.M. YangH. SuX.D. LinY.B. LongH. Prognostic impact of pattern-based grading system by the new IASLC/ATS/ERS classification in Asian patients with stage I lung adenocarcinoma.Lung Cancer201590360460910.1016/j.lungcan.2015.10.02626547801
    [Google Scholar]
  8. NitadoriJ. BogradA.J. KadotaK. SimaC.S. RizkN.P. MoralesE.A. RuschV.W. TravisW.D. AdusumilliP.S. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller.J. Natl. Cancer Inst.2013105161212122010.1093/jnci/djt16623926067
    [Google Scholar]
  9. GerlingerM. RowanA.J. HorswellS. LarkinJ. EndesfelderD. GronroosE. MartinezP. MatthewsN. StewartA. TarpeyP. VarelaI. PhillimoreB. BegumS. McDonaldN.Q. ButlerA. JonesD. RaineK. LatimerC. SantosC.R. NohadaniM. EklundA.C. Spencer-DeneB. ClarkG. PickeringL. StampG. GoreM. SzallasiZ. DownwardJ. FutrealP.A. SwantonC. SwantonC. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.N. Engl. J. Med.20123661088389210.1056/NEJMoa111320522397650
    [Google Scholar]
  10. KarasakiT. MooreD.A. VeeriahS. Naceur-LombardelliC. TonchevaA. MagnoN. WardS. BakirM.A. WatkinsT.B.K. GrigoriadisK. HuebnerA. HillM.S. FrankellA.M. AbboshC. PuttickC. ZhaiH. Gimeno-ValienteF. SaghafiniaS. KanuN. DietzenM. PichO. LimE.L. Martínez-RuizC. BlackJ.R.M. BiswasD. CampbellB.B. LeeC. ColliverE. EnfieldK.S.S. HesseyS. HileyC.T. ZaccariaS. LitchfieldK. BirkbakN.J. CadieuxE.L. DemeulemeesterJ. Van LooP. AdusumilliP.S. TanK.S. CheemaW. Sanchez-VegaF. JonesD.R. RekhtmanN. TravisW.D. HackshawA. MarafiotiT. SalgadoR. Le QuesneJ. NicholsonA.G. Van LooP. Le QuesneJ. LesterJ.F. BajajA. NakasA. Sodha-RamdeenA. AngK. TufailM. ChowdhryM.F. ScotlandM. BoylesR. RathinamS. WilsonC. MarroneD. DullooS. FennellD.A. MatharuG. ShawJ.A. RileyJ. PrimroseL. BoletiE. CheyneH. KhalilM. RichardsonS. CruickshankT. PriceG. KerrK.M. BenafifS. GilbertK. NaiduB. PatelA.J. OsmanA. LacsonC. LangmanG. ShacklefordH. DjearamanM. KadiriS. MiddletonG. LeekA. HodgkinsonJ.D. TottenN. MonteroA. SmithE. FontaineE. GranatoF. DoranH. NovasioJ. RammohanK. JosephL. BishopP. ShahR. MossS. JoshiV. CrosbieP. GomesF. BrownK. CarterM. ChaturvediA. PriestL. OliveiraP. LindsayC.R. BlackhallF.H. KrebsM.G. SummersY. ClipsonA. TugwoodJ. KerrA. RothwellD.G. KilgourE. DiveC. AertsH.J.W.L. SchwarzR.F. KaufmannT.L. WilsonG.A. RosenthalR. SzallasiZ. KisistokJ. SokacM. DiossyM. BunkumA. StewartA. MagnessA. RowanA. KaramaniA. ChainB. CastignaniC. BaileyC. WeedenC.E. RichardC. PearceD.R. KaragianniD. LeviD. HoxhaE. NyeE. GrönroosE. Gálvez-CancinoF. AthanasopoulouF. KassiotisG. StavrouG. MastrokalosG. LoweH.L. MatosI.G. GoldmanJ. ReadingJ.L. HerreroJ. RaneJ.K. NicodJ. LamJ.M. HartleyJ.A. PeggsK.S. SelvarajuK. TholK. NgK.W. ChenK. DijkstraK. ThakkarK. EnsellL. ShahM. DuranM.V. LitovchenkoM. SunderlandM.W. LeungM. EscuderoM. AngelovaM. TanićM. SivakumarM. ChervovaO. LucasO. Al-SawafO. PrymasP. HobsonP. PawlikP. StoneR.K. BenthamR. HyndsR.E. VendraminR. LópezS. GambleS. UngS.K.A. QuezadaS.A. VanlooS. BoeingS. BeckS. BolaS.K. DennerT. MourikisT.P. SpanswickV. BarbèV. LuW-T. HillW. LiuW.K. WuY. NaitoY. RamsdenZ. VeigaC. RoyleG. Collins-FeketeC-A. FraioliF. AshfordP. ClarkT. ForsterM.D. LeeS.M. BorgE. FalzonM. Papadatos-PastosD. WilsonJ. AhmadT. ProcterA.J. AhmedA. TaylorM.N. NairA. LawrenceD. PatriniD. NavaniN. ThakrarR.M. JanesS.M. HoogenboomE.M. MonkF. HoldingJ.W. ChoudharyJ. BhakhriK. ScarciM. HaywardM. PanagiotopoulosN. GormanP. KhiroyaR. StephensR.C.M. WongY.N.S. BandulaS. SharpA. SmithS. GowerN. DhandaH.K. ChanK. PilottiC. LeslieR. GrapaA. ZhangH. AbdulJabbarK. PanX. YuanY. ChuterD. MacKenzieM. CheeS. AlzetaniA. CaveJ. ScarlettL. RichardsJ. IngramP. AustinS. LimE. De SousaP. JordanS. RiceA. RaubenheimerH. BhayaniH. AmbroseL. DevarajA. ChavanH. BegumS. BuderiS.I. KaniuD. MalimaM. BoothS. FernandesN. ShahP. ProliC. HewishM. DansonS. ShackclothM.J. RobinsonL. RussellP. BlythK.G. DickC. KirkA. AsifM. BilanciaR. KostoulasN. ThomasM. McGranahanN. SwantonC. Jamal-HanjaniM. Evolutionary characterization of lung adenocarcinoma morphology in TRACERx.Nat. Med.202329483384510.1038/s41591‑023‑02230‑w37045996
    [Google Scholar]
  11. Perez-JohnstonR. Araujo-FilhoJ.A. ConnollyJ.G. CasoR. WhitingK. TanK.S. ZhouJ. GibbsP. RekhtmanN. GinsbergM.S. JonesD.R. CT-based radiogenomic analysis of clinical stage I lung adenocarcinoma with histopathologic features and oncologic outcomes.Radiology2022303366467210.1148/radiol.21158235230187
    [Google Scholar]
  12. ParkS. LeeS.M. KimS. LeeJ.G. ChoiS. DoK.H. SeoJ.B. Volume doubling times of lung adenocarcinomas: Correlation with predominant histologic subtypes and prognosis.Radiology2020295370371210.1148/radiol.202019183532228296
    [Google Scholar]
  13. EriguchiD. ShimadaY. ImaiK. FurumotoH. OkanoT. MasunoR. MatsubayashiJ. KajiwaraN. OhiraT. IkedaN. Predictive accuracy of lepidic growth subtypes in early-stage adenocarcinoma of the lung by quantitative CT histogram and FDG-PET.Lung Cancer2018125142110.1016/j.lungcan.2018.08.02730429012
    [Google Scholar]
  14. YangZ. DongH. FuC. ZhangZ. HongY. ShanK. MaC. ChenX. XuJ. PangZ. HouM. ZhangX. ZhuW. LiuL. LiW. SunJ. ZhaoF. A nomogram based on CT intratumoral and peritumoral radiomics features preoperatively predicts poorly differentiated invasive pulmonary adenocarcinoma manifesting as subsolid or solid lesions: a double-center study.Front. Oncol.202414128955510.3389/fonc.2024.128955538313797
    [Google Scholar]
  15. CiofiacC.M. MămuleanuM. FlorescuL.M. GheoneaI.A. CT imaging patterns in major histological types of lung cancer.Life (Basel)202414446210.3390/life1404046238672733
    [Google Scholar]
  16. LiH. LiL. LiuY. DengY. ZhuY. HuangL. LongT. ZengL. ShuY. PengD. Predictive value of CT and 18F-FDG PET/CT features on spread through air space in lung adenocarcinoma.BMC Cancer202424143410.1186/s12885‑024‑12220‑x38589832
    [Google Scholar]
  17. ShaoX. NiuR. JiangZ. ShaoX. WangY. Role of PET/CT in management of early lung adenocarcinoma.AJR Am. J. Roentgenol.2020214243744510.2214/AJR.19.2158531714848
    [Google Scholar]
  18. ZhangJ. ZhaoX. ZhaoY. ZhangJ. ZhangZ. WangJ. WangY. DaiM. HanJ. Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.Eur. J. Nucl. Med. Mol. Imaging20204751137114610.1007/s00259‑019‑04592‑131728587
    [Google Scholar]
  19. Piñeiro-FielM. MoscosoA. Lado-CacheiroL. Pombo-PasínM. Rey-BretalD. Gómez-LadoN. Mondelo-GarcíaC. Silva-RodríguezJ. PubulV. SánchezM. RuibalÁ. AguiarP. Is FDG-PET texture analysis related to intratumor biological heterogeneity in lung cancer?Eur. Radiol.20213164156416510.1007/s00330‑020‑07507‑z33247345
    [Google Scholar]
  20. RuanM. LiuL. WangL. LeiB. SunX. ChangC. ShenY. XieW. Correlation between combining 18F–FDG PET/CT metabolic parameters and other clinical features and ALK or ROS1 fusion in patients with non-small-cell lung cancer.Eur. J. Nucl. Med. Mol. Imaging20204751183119710.1007/s00259‑019‑04652‑631897590
    [Google Scholar]
  21. FujikawaR. MuraokaY. KashimaJ. YoshidaY. ItoK. WatanabeH. KusumotoM. WatanabeS. YatabeY. Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system.J. Thorac. Oncol.202217570070710.1016/j.jtho.2022.02.00535227909
    [Google Scholar]
  22. CasoR. Sanchez-VegaF. TanK.S. MastrogiacomoB. ZhouJ. JonesG.D. NguyenB. SchultzN. ConnollyJ.G. BrandtW.S. BottM.J. RoccoG. MolenaD. IsbellJ.M. LiuY. MayoM.W. AdusumilliP.S. TravisW.D. JonesD.R. The underlying tumor genomics of predominant histologic subtypes in lung adenocarcinoma.J. Thorac. Oncol.202015121844185610.1016/j.jtho.2020.08.00532791233
    [Google Scholar]
  23. KitagawaS. ZenkeY. TakiT. AokageK. SakaiT. ShibataY. IzumiH. NosakiK. UmemuraS. MatsumotoS. YohK. SakamotoN. SakashitaS. KojimaM. TsuboiM. GotoK. IshiiG. Prognostic value of predominant subtype in pathological stage II–III lung adenocarcinoma with epidermal growth factor receptor mutation.Lung Cancer202418810745310.1016/j.lungcan.2023.10745338160515
    [Google Scholar]
  24. NamJ.G. ParkS. ParkC.M. JeonY.K. ChungD.H. GooJ.M. KimY.T. KimH. Histopathologic basis for a chest CT deep learning survival prediction model in patients with lung adenocarcinoma.Radiology2022305244145110.1148/radiol.21326235787198
    [Google Scholar]
  25. LiQ. LiX. LiX.Y. HeX.Q. ChuZ.G. LuoT.Y. Histological subtypes of solid-dominant invasive lung adenocarcinoma: Differentiation using dual-energy spectral CT.Clinical. Radiol.202176177.e177.e710.1016/j.crad.2020.08.034
    [Google Scholar]
  26. TsaiP.C. YehY.C. HsuP.K. ChenC.K. ChouT.Y. WuY.C. CT-guided core biopsy for peripheral sub-solid pulmonary nodules to predict predominant histological and aggressive subtypes of lung adenocarcinoma.Ann. Surg. Oncol.202027114405441210.1245/s10434‑020‑08511‑932361797
    [Google Scholar]
  27. KoJ.P. SuhJ. IbidapoO. EscalonJ.G. LiJ. PassH. NaidichD.P. CrawfordB. TsaiE.B. KooC.W. MikheevA. RusinekH. Lung adenocarcinoma: Correlation of quantitative CT findings with pathologic findings.Radiology2016280393193910.1148/radiol.201614297527097236
    [Google Scholar]
  28. ChoI.S. ShimH.S. LeeH.J. SuhY.J. Clinical implication of the 2020 International Association for the Study of Lung Cancer histologic grading in surgically resected pathologic stage 1 lung adenocarcinomas: Prognostic value and association with computed tomography characteristics.Lung Cancer202318410734510.1016/j.lungcan.2023.10734537611496
    [Google Scholar]
  29. WangL. ZhaoL. ZhaoW. ShiM. LiX. LiangZ. Maximal diameters and mean computed tomography (CT) value of synchronous multiple pure ground-glass opacities in lung adenocarcinoma are smaller.Clin. Radiol.2024799e1101e110710.1016/j.crad.2024.05.00638890050
    [Google Scholar]
  30. MoonJ.W. SongY.H. KimY.N. WooJ.Y. SonH.J. HwangH.S. LeeS.H. [18F]FDG PET/CT is useful in discriminating invasive adenocarcinomas among pure ground-glass nodules: Comparison with CT findings—a bicenter retrospective study.Ann. Nucl. Med.202438975476210.1007/s12149‑024‑01944‑238795306
    [Google Scholar]
  31. SunK. YouA. WangB. SongN. WanZ. WuF. ZhaoW. ZhouF. LiW. Clinical T1aN0M0 lung cancer: Differences in clinicopathological patterns and oncological outcomes based on the findings on high-resolution computed tomography.Eur. Radiol.202131107353736210.1007/s00330‑021‑07865‑233860370
    [Google Scholar]
  32. DaiJ. YuG. YuJ. Can CT imaging features of ground‐glass opacity predict invasiveness? A meta‐analysis.Thorac. Cancer20189445245810.1111/1759‑7714.1260429446528
    [Google Scholar]
  33. WangD. MoY. LiuF. ZhengS. LiuH. LiH. GuoJ. FanW. QiuB. ZhangX. LiuH. Repeated dynamic [18F]FDG PET/CT imaging using a high-sensitivity PET/CT scanner for assessing non-small cell lung cancer patients undergoing induction immuno-chemotherapy followed by hypo-fractionated chemoradiotherapy and consolidative immunotherapy: Report from a prospective observational study (GASTO-1067).Eur. J. Nucl. Med. Mol. Imaging202410.1007/s00259‑024‑06819‑238953934
    [Google Scholar]
  34. MasseM. ChardinD. TricaricoP. FerrariV. MartinN. OttoJ. DarcourtJ. ComteV. HumbertO. [18F]FDG-PET/CT atypical response patterns to immunotherapy in non-small cell lung cancer patients: Long term prognosis assessment and clinical management proposal.Eur. J. Nucl. Med. Mol. Imaging202451123696370810.1007/s00259‑024‑06794‑838896129
    [Google Scholar]
  35. FengY. ChengB. ZhanS. LiuH. LiJ. ChenP. WangZ. HuangX. FuX. YeW. WangR. WangQ. XiangY. WangH. ZhuF. ZhengX. FuW. HuG. ChenZ. HeJ. LiangW. The impact of PET/CT and brain MRI for metastasis detection among patients with clinical T1-category lung cancer: Findings from a large-scale cohort study.Eur. J. Nucl. Med. Mol. Imaging202451113400341610.1007/s00259‑024‑06740‑838722381
    [Google Scholar]
  36. ZhouL. SunJ. LongH. ZhouW. XiaR. LuoY. FangJ. WangY. ChenX. Imaging phenotyping using 18F-FDG PET/CT radiomics to predict micropapillary and solid pattern in lung adenocarcinoma.Insights Imaging2024151510.1186/s13244‑023‑01573‑938185779
    [Google Scholar]
  37. HanY. MaY. WuZ. ZhangF. ZhengD. LiuX. TaoL. LiangZ. YangZ. LiX. HuangJ. GuoX. Histologic subtype classification of non-small cell lung cancer using PET/CT images.Eur. J. Nucl. Med. Mol. Imaging202148235036010.1007/s00259‑020‑04771‑532776232
    [Google Scholar]
  38. SunX.Y. ChenT.X. ChangC. TengH.H. XieC. RuanM.M. LeiB. LiuL. WangL.H. YangY.H. XieW.H. SUVmax of 18FDG PET/CT predicts histological grade of lung adenocarcinoma.Acad. Radiol.2021281495710.1016/j.acra.2020.01.03032113879
    [Google Scholar]
  39. LeeJ. ChoY.S. KimJ. ShimY.M. LeeK.H. ChoiJ.Y. Prognostic significance of metabolic parameters by 18F-FDG PET/CT in thymic epithelial tumors.Cancers (Basel)202113471210.3390/cancers1304071233572388
    [Google Scholar]
  40. Morales-OyarvideV. Mino-KenudsonM. High-grade lung adenocarcinomas with micropapillary and/or solid patterns.Curr. Opin. Pulm. Med.201420431732310.1097/MCP.000000000000007024852329
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056352795241030102554
Loading
/content/journals/cmir/10.2174/0115734056352795241030102554
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test