Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Hypoxic-ischemic encephalopathy (HIE) is a brain injury that is caused by improper oxygen/blood flow. None of the existing works have concentrated on detecting HIE based on the sub-acute injury in the brain.

Objective

To enhance the accuracy and specificity of HIE detection, a comprehensive approach that includes SAI identification, BGT segmentation, and volume calculation will be utilized.

Methods

This study addresses the critical challenge of detecting hypoxic-schemic encephalopathy (HIE) through advanced image processing techniques applied to brain MRI data. The primary research questions focus on the effectiveness of the proposed CO-GW-RNN method in accurately identifying HIE and the impact of incorporating segmentation and clustering processes on detection performance.

Results

The proposed method achieved remarkable results, demonstrating an accuracy of 98.98% and a specificity of 98.17%, significantly outperforming existing techniques such as the RUB classifier (84.6% accuracy) and the DTL method (94.00% accuracy).

Conclusion

These findings validate the effectiveness of the proposed methodology in improving HIE detection in brain MRI images.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056352573241118122026
2025-01-01
2025-07-15
The full text of this item is not currently available.

References

  1. Garcia-AlixA. ArnaezJ. ArcaG. Martinez-BiargeM. Hypoxic-ischaemic encephalopathy code: A systematic review for resource-limited settings.An. Pediatr. (Engl. Ed.)2024100427528610.1016/j.anpede.2024.04.00138614864
    [Google Scholar]
  2. LvH. LiuF. WangQ. DongZ. ZhangH. RenP. LiL. Correlation analysis between the amniotic fluid contamination and clinical grading of neonatal hypoxic–ischemic encephalopathy and biomarkers of brain damage.BMC Pediatr.202424117810.1186/s12887‑024‑04663‑938481189
    [Google Scholar]
  3. WuT.W. SchmickerR. WoodT.R. MietzschU. ComstockB. HeagertyP.J. RaoR. GonzalezF. JuulS. WuY.W. Esophageal versus rectal temperature monitoring during whole-body therapeutic hypothermia for hypoxic–ischemic encephalopathy: Association with short- and long-term outcomes.J. Pediatr.202426811393310.1016/j.jpeds.2024.11393338309524
    [Google Scholar]
  4. ImS.A. TomitaE. OhM.Y. KimS.Y. KangH.M. YounY.A. Volumetric changes in brain MRI of infants with hypoxic-ischemic encephalopathy and abnormal neurodevelopment who underwent therapeutic hypothermia.Brain Res.2024182514870310.1016/j.brainres.2023.14870338101694
    [Google Scholar]
  5. FaingoldR. PrempunpongC. GarfinkleJ. St MartinC. MenegottoF. BoyleR. AguileraJ.M. NguyenK.A. Sant’AnnaG.M. Association between early basal ganglia and thalami perfusion assessed by color doppler ultrasonography and brain injury in infants with hypoxic-ischemic encephalopathy: A prospective cohort study.J. Pediatr.202427111408610.1016/j.jpeds.2024.11408638705232
    [Google Scholar]
  6. GuarneraA. LucignaniG. ParrilloC. Rossi-EspagnetM.C. CarducciC. MoltoniG. SavareseI. CampiF. DottaA. MiloF. CappellettiS. Capitello GrimaldiT. GandolfoC. NapolitanoA. LongoD. Predictive value of MRI in hypoxic-ischemic encephalopathy treated with therapeutic hypothermia.Children (Basel)202310344610.3390/children1003044636980004
    [Google Scholar]
  7. CarameloI. CoelhoM. RosadoM. CardosoC.M.P. DinisA. DuarteC.B. GrãosM. ManadasB. Biomarkers of hypoxic–ischemic encephalopathy: A systematic review.World J. Pediatr.202319650554810.1007/s12519‑023‑00698‑737084165
    [Google Scholar]
  8. SalamahA. El AmrousyD. ElsheikhM. MehrezM. Citicoline in hypoxic ischemic encephalopathy in neonates: A randomized controlled trial.Ital. J. Pediatr.20234915510.1186/s13052‑023‑01452‑537173784
    [Google Scholar]
  9. EstiphanT. SturzaJ. ShellhaasR.A. CarlsonM.D. A novel clinical risk scoring system for neurodevelopmental outcomes among survivors of neonatal hypoxic-ischemic encephalopathy (HIE).Pediatr. Neonatol.202465435435810.1016/j.pedneo.2023.07.00638057259
    [Google Scholar]
  10. WangZ. ZhangD. ZhangP. ZhouW. HuL. WangL. ChengG. Safety and efficacy of therapeutic hypothermia in neonates with mild hypoxic-ischemic encephalopathy.BMC Pediatr.231530202310.1186/s12887‑023‑04365‑837884911
    [Google Scholar]
  11. HanY. WuP. TianJ. ChenH. YangC. Diffusion kurtosis imaging and diffusion-weighted imaging comparison in early hypoxic-ischemic brain oedema diagnosis.Eur. J. Med. Res.202328115910.1186/s40001‑023‑01090‑x37131227
    [Google Scholar]
  12. ParmentierC.E.J. de VriesL.S. GroenendaalF. Magnetic resonance imaging in (Near-) term infants with hypoxic-ischemic encephalopathy.Diagnostics (Basel)202212364510.3390/diagnostics1203064535328199
    [Google Scholar]
  13. CascioA. FerrandA. RacineE. St-HilaireM. SanonP.N. GorgosA. WintermarkP. Discussing brain magnetic resonance imaging results for neonates with hypoxic-ischemic encephalopathy treated with hypothermia: A challenge for clinicians and parents.eNeurologicalSci20222910042410.1016/j.ensci.2022.10042436147866
    [Google Scholar]
  14. ElshalF.I.S. ElshehabyW.A. DawoudM.A. ShabanE.A. Magnetic resonance imaging and spectroscopy in evaluation of hypoxic ischemic encephalopathy in pediatric age group.Egypt. J. Radiol. Nucl. Med.202152119810.1186/s43055‑021‑00578‑y
    [Google Scholar]
  15. TabbanH.A. HassanI.A. SalemK.Y. Hypoxic ischemic encephalopathy MRI findings and patterns review, revisited.OMICS J. Radiol.202211415210.4172/2167‑7964.1000415
    [Google Scholar]
  16. MidiriF. La SpinaC. AlongiA. VernuccioF. LongoM. ArgoA. MidiriM. Ischemic hypoxic encephalopathy: The role of MRI of neonatal injury and medico-legal implication.Forensic Sci. Int.202132711096810.1016/j.forsciint.2021.11096834455399
    [Google Scholar]
  17. Piñeiro-RamosJ.D. Núñez-RamiroA. Llorens-SalvadorR. Parra-LlorcaA. Sánchez-IllanaÁ. QuintásG. Boronat-GonzálezN. Martínez-RodillaJ. KuligowskiJ. VentoM. Metabolic phenotypes of hypoxic-ischemic encephalopathy with normal vs. pathologic magnetic resonance imaging outcomes.Metabolites202010310910.3390/metabo1003010932183365
    [Google Scholar]
  18. BanuraN. OhkiA. SaitoS. Asymmetry index evaluation of cerebral volume and cerebral blood flow in neonatal hypoxic–ischemic encephalopathy.Symmetry (Basel)202214359610.3390/sym14030596
    [Google Scholar]
  19. AkerK. ThomasN. AddeL. KoshyB. Martinez-BiargeM. NakkenI. PadankattiC.S. StøenR. Prediction of outcome from MRI and general movements assessment after hypoxic-ischaemic encephalopathy in low-income and middle-income countries: Data from a randomised controlled trial.Arch. Dis. Child. Fetal Neonatal Ed.20221071323810.1136/archdischild‑2020‑32130934112719
    [Google Scholar]
  20. LeeJ.W. SreepadaL.P. BeversM.B. LiK. SciricaB.M. Santana da SilvaD. HendersonG.V. BayC. LinA.P. Magnetic resonance spectroscopy of hypoxic-ischemic encephalopathy after cardiac arrest.Neurology20229812e1226e123710.1212/WNL.000000000001329735017308
    [Google Scholar]
  21. BoerwinkleV.L. SussmanB.L. ManjónI. MireaL. SulemanS. WyckoffS.N. BonnellA. OrgillA. TomD.J. Association of network connectivity via resting-state functional MRI with consciousness, mortality, and neonatal acute brain injury outcomes.Neuroimage Clin.20223410296210.1016/j.nicl.2022.10296235152054
    [Google Scholar]
  22. AlqarafiA. Ahmad KhanA. Kumar MahendranR. Al-SaremM. AlbalwyF. Multi-scale GC-T2: Automated region of interest assisted skin cancer detection using multi-scale graph convolution and tri-movement based attention mechanism.Biomed. Signal Process. Control20249510631310.1016/j.bspc.2024.106313
    [Google Scholar]
  23. KhanA.A. MadendranR.K. ThirunavukkarasuU. FaheemM. D 2 PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism.CAAI Trans. Intell. Technol.20238375576910.1049/cit2.12261
    [Google Scholar]
  24. KhanA.A. MahendranR.K. PerumalK. FaheemM. Dual-3DM 3-AD: Mixed transformer based semantic segmentation and triplet preprocessing for early multi-class Alzheimer’s diagnosis.IEEE Trans. Neural Syst. Rehabil. Eng.20243269670710.1109/TNSRE.2024.335772338261494
    [Google Scholar]
  25. Ahmad KhanA. Muhammad Ali ShahidM. Nawaz BashirR. IqbalS. Shehzad Ahmad ShahidA. MaqboolJ. WechtaisongC. Detection of omicron caused pneumonia from radiology images using convolution neural network (CNN).Comput. Mater. Continua20237423743376110.32604/cmc.2023.033924
    [Google Scholar]
  26. KujurA. RazaZ. KhanA.A. WechtaisongC. Data complexity based evaluation of the model dependence of brain MRI images for classification of brain tumour and Alzheimer’s disease.IEEE Access20221011211711213310.1109/ACCESS.2022.3216393
    [Google Scholar]
  27. BakheetD. AlotaibiN. KonnD. VollmerB. MaharatnaK. Prediction of cerebral palsy in newborns with hypoxic-ischemic encephalopathy using multivariate EEG analysis and machine learning.IEEE Access2021913783313784610.1109/ACCESS.2021.3118076
    [Google Scholar]
  28. MansourA. FuhrmanJ.D. AmmarF.E. LogginiA. DavisJ. LazaridisC. KramerC. GoldenbergF.D. GigerM.L. Machine learning for early detection of hypoxic-ischemic brain injury after cardiac arrest.Neurocrit. Care202236397498210.1007/s12028‑021‑01405‑y34873672
    [Google Scholar]
  29. WuM. ShenX. LaiC. ZhengW. LiY. ShangguanZ. YanC. LiuT. WuD. Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches.BMC Med. Imaging202121110310.1186/s12880‑021‑00634‑z34158001
    [Google Scholar]
  30. PavelA.M. O’TooleJ.M. ProiettiJ. LivingstoneV. MitraS. MarnaneW.P. FinderM. DempseyE.M. MurrayD.M. BoylanG.B. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic‐ischemic encephalopathy.Epilepsia202364245646810.1111/epi.1746836398397
    [Google Scholar]
  31. Varzas-CalixtoJ. WuY.W. KuzniewiczM. CornetM.C. ForquerH. GerstleyL. HamiltonE. WarrickP. KearneyR. Prediction of hypoxic-ischemic encephalopathy using events in fetal heart rate and uterine pressure.Computing in Cardiology (CinC)Atlanta, GA, USA, 01-04 Oct. 2023, pp. 1-4.10.22489/CinC.2023.380
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056352573241118122026
Loading
/content/journals/cmir/10.2174/0115734056352573241118122026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test