Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Introduction

This paper presents a multichannel deep-learning method for detecting lung diseases using chest X-ray images. Using EfficientNetB0 through EfficientNetB7 pretrained models, the methodology offers improved performance in classifying COVID-19, viral pneumonia, and normal chest X-rays.

Methods

The EfficientNetB2 model was customized by incorporating Squeeze-and-Excitation (SE) blocks and the Convolutional Block Attention Module (CBAM) to improve the model's attention mechanisms. Additional convolutional layers were added for improved feature extraction, and multi-scale feature fusion was implemented to capture features at different scales.

Results

In this study, 99.3% of the unseen chest X-ray images were identified using the proposed model. It demonstrated superior performance, surpassing existing techniques and highlighting its robustness and generalizability on unseen data samples.

Conclusion

Moreover, visualization techniques were used to inspect the intermediate layers of the model, providing deeper insights into its processing and interpretation of medical images. The proposed method offers healthcare radiologists a valuable tool for rapid and accurate point of care diagnoses.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056344651241023070250
2024-01-01
2025-06-26
The full text of this item is not currently available.

References

  1. LiY. ZhangZ. DaiC. DongQ. BadrigilanS. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis.Comput. Biol. Med.202012310389810.1016/j.compbiomed.2020.10389832768045
    [Google Scholar]
  2. MooreE.H. Technical aspects of needle aspiration lung biopsy: A personal perspective.Radiology2082303318199810.1148/radiology.208.2.96805529680552
    [Google Scholar]
  3. MargulisE. Dagan-WienerA. IvesR.S. JaffariS. SiemsK. NivM.Y. Intense bitterness of molecules: Machine learning for expediting drug discovery.Comput. Struct. Biotechnol. J.20211956857610.1016/j.csbj.2020.12.03033510862
    [Google Scholar]
  4. RedmonJ. DivvalaS. GirshickR. FarhadiA. You only look once: Unified, real-time object detection.IEEE Conference on Computer Vision and Pattern RecognitionLas Vegas, NV, USA, 27-30 June 2016, pp. 779-788.10.1109/CVPR.2016.91
    [Google Scholar]
  5. DasP.K. AD.V. MeherS. PandaR. AbrahamA. A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia.IEEE Access202210817418176310.1109/ACCESS.2022.3196037
    [Google Scholar]
  6. CervantesJ. Garcia-LamontF. Rodríguez-MazahuaL. LopezA. A comprehensive survey on support vector machine classification: Applications, challenges and trends.Neurocomputing408189215202010.1016/j.neucom.2019.10.118
    [Google Scholar]
  7. da ChagasJ.V.S. RodriguesD.D.A. IvoR.F. A new approach for the detection of pneumonia in children using CXR images based on an real-time IoT system.J. Real Time Image Process.20211099111410.1007/s11554‑021‑01086‑y
    [Google Scholar]
  8. Jothi PrabhaN. VenkateswaranN. SengodanP. AI-based deep random forest ensemble model for prediction of COVID-19 and pneumonia from chest X-ray images.Artificial Intelligence for Innovative Healthcare Informatics ParahS.A. RashidM. VaradarajanV. ChamSpringer202213314910.1007/978‑3‑030‑96569‑3_7
    [Google Scholar]
  9. MannaA. KunduR. KaplunD. SinitcaA. SarkarR. A fuzzy rank-based ensemble of CNN models for classification of cervical cytology.Sci. Rep.20211111453810.1038/s41598‑021‑93783‑834267261
    [Google Scholar]
  10. AlsharifR. Al-IssaY. AlqudahA.M. QasmiehI.A. MustafaW.A. AlquranH. PneumoniaNet: Automated detection and classification of pediatric pneumonia using chest X-ray images and CNN approach.Electronics (Basel)20211023294910.3390/electronics10232949
    [Google Scholar]
  11. WangX. PengY. LuL. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases.2017arXiv10.48550/arXiv.1705.02315
    [Google Scholar]
  12. WangL. LinZ.Q. WongA. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.Sci. Rep.20201011954910.1038/s41598‑020‑76550‑z33177550
    [Google Scholar]
  13. MeedeniyaD. KumarasingheH. KolonneS. FernandoC. 2022Chest X-ray analysis empowered with deep learning: A systematic review.Appl. Soft Comput.12610931910.1016/j.asoc.2022.109319
    [Google Scholar]
  14. FernandoC. KolonneS. KumarasingheH. MeedeniyaD. Chest radiographs classification using multi-model deep learning: A comparative study.2nd International Conference on Advanced Research in Computing (ICARC)Belihuloya, Sri Lanka, 23-24 Feb. 2022, pp. 165-170.10.1109/ICARC54489.2022.9753811
    [Google Scholar]
  15. StephenO. SainM. MaduhU.J. JeongD.U. An efficient deep learning approach to pneumonia classification in healthcare.J. Healthc. Eng.201920191710.1155/2019/418094931049186
    [Google Scholar]
  16. VarshniD. ThakralK. AgarwalL. Pneumonia detection using CNN based feature extraction. IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT)Coimbatore, India, 20-22 Feb. 2019, pp. 1-7.10.1109/ICECCT.2019.8869364
    [Google Scholar]
  17. KunduR. DasR. GeemZ.W. HanG.T. SarkarR. Pneumonia detection in chest X-ray images using an ensemble of deep learning models.PLoS One2021169e025663010.1371/journal.pone.025663034492046
    [Google Scholar]
  18. RajpurkarP. IrvinJ. ZhuK. CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning.arXiv10.48550/arXiv.1711.052252017
    [Google Scholar]
  19. JainR. NagrathP. KatariaG. KaushikV.S. HemanthD.J. Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning.Measurement165108046202010.1016/j.measurement.2020.108046
    [Google Scholar]
  20. DeyN. ZhangY.D. RajinikanthV. PugalenthiR. RajaN.S.M. Customized VGG19 architecture for pneumonia detection in chest x-rays.Pattern Recognit. Lett.2021143677410.1016/j.patrec.2020.12.010
    [Google Scholar]
  21. IbrahimD.M. ElshennawyN.M. SarhanA.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases.Comput. Biol. Med.202113210434810.1016/j.compbiomed.2021.10434833774272
    [Google Scholar]
  22. JinW. DongS. DongC. YeX. Hybrid ensemble model for differential diagnosis between COVID-19 and common viral pneumonia by chest X-ray radiograph.Comput. Biol. Med.202113110425210.1016/j.compbiomed.2021.10425233610001
    [Google Scholar]
  23. KarthikR. MenakaR. MH. Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN.Appl. Soft Comput.20219910674410.1016/j.asoc.2020.10674432989379
    [Google Scholar]
  24. BruneseL. MercaldoF. ReginelliA. SantoneA. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays.Comput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.10560832599338
    [Google Scholar]
  25. PanwarH. GuptaP.K. SiddiquiM.K. Morales-MenendezR. BhardwajP. SinghV. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images.Chaos Solit. Fractals.140110190202010.1016/j.chaos.2020.110190
    [Google Scholar]
  26. AlhudhaifA. PolatK. KaramanO. Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images.Expert Syst. Appl.202118011514110.1016/j.eswa.2021.11514133967405
    [Google Scholar]
  27. SirazitdinovI. KholiavchenkoM. MustafaevT. YixuanY. KuleevR. IbragimovB. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database.Comput. Electr. Eng.20197838839910.1016/j.compeleceng.2019.08.004
    [Google Scholar]
  28. JaiswalA.K. TiwariP. KumarS. GuptaD. KhannaA. RodriguesJ.J.P.C. Identifying pneumonia in chest X-rays: A deep learning approach.Measurement201914551151810.1016/j.measurement.2019.05.076
    [Google Scholar]
  29. MahmudT. RahmanM.A. FattahS.A. CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization.Comput. Biol. Med.202012210386910.1016/j.compbiomed.2020.10386932658740
    [Google Scholar]
  30. OuchichaC. AmmorO. MeknassiM. CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images.Chaos Solitons Fractals202014011024510.1016/j.chaos.2020.11024532921934
    [Google Scholar]
  31. WangS.H. ZhangX. ZhangY.D. Deep stacked sparse autoencoder analytical model for COVID-19 diagnosis by fractional Fourier entropy.ACM Trans. Manag. Inf. Syst.202213112010.1145/3451357
    [Google Scholar]
  32. WangS.H. KhanM.A. GovindarajV. FernandesS.L. ZhuZ.Q. ZhangY.D. Deep rank-based average pooling network for COVID-19 recognition.Comput. Mater. Continua20227022797281310.32604/cmc.2022.020140
    [Google Scholar]
  33. HorryM.J. ChakrabortyS. PaulM. UlhaqA. PradhanB. SahaM. ShuklaN. COVID-19 detection through transfer learning using multimodal imaging data.IEEE Access814980814982410.1109/ACCESS.2020.3016780
    [Google Scholar]
  34. RajaramanS. SiegelmanJ. AldersonP.O. FolioL.S. LesR. AntaniS.K. Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays.IEEE Access811504111505010.1109/ACCESS.2020.3003810
    [Google Scholar]
  35. KhobahiS. AgarwalC. SoltanalianM. Coronet: A deep network architecture for semi-supervised task-based identification of covid-19 from chest x-ray imagesmedRxiv202010.1101/2020.04.14.20065722
    [Google Scholar]
  36. Rab RatulM.A. Tavakol ElahiM. YuanK. LeeW. Ramnet: A residual attention mobilenet to detect covid-19 cases from chest x-ray images.EEE International Conference on Machine Learning and Applications (ICMLA)Miami, FL, USA, 14-17 Dec. 2020, pp. 195-200.10.1109/ICMLA51294.2020.00040
    [Google Scholar]
  37. ChowdhuryN.K. KabirM.A. RahmanM.M. RezoanaN. ECOVNet: A highly effective ensemble based deep learning model for detecting COVID-19.PeerJ. Comput. Sci.20217e55110.7717/peerj‑cs.551
    [Google Scholar]
  38. BhadouriaH.S. KumarK. SwarajA. VermaK. KaurA. SharmaS.H. SinghG. KumarA. de SalesL.M. Classification of COVID-19 on chest X-Ray images using deep learning model with histogram equalization and lungs segmentation.arXiv202110.48550/arXiv.2112.02478
    [Google Scholar]
  39. SzczepanskiT. SitekA. TrzcinskiT. PłotkaS. Pother: Patch-voted deep learning-based chest x-ray bias analysis for covid19 detection.Computational Science – ICCS GroenD. de MulatierC. PaszynskiM. KrzhizhanovskayaV.V. DongarraJ.J. SlootP.M.A. ChamSpringer International Publishing202244145410.1007/978‑3‑031‑08754‑7_51
    [Google Scholar]
  40. Al RahhalM.M. BaziY. JomaaR.M. AlShibliA. AlajlanN. MekhalfiM.L. MelganiF. Covid-19 detection in ct/x-ray imagery using vision transformers2022J. Pers. Med.12231010.3390/jpm12020310
    [Google Scholar]
  41. UllahZ. UsmanM. LatifS. GwakJ. Densely attention mechanism based network for COVID-19 detection in chest X-rays.Sci. Rep.202313126110.1038/s41598‑022‑27266‑936609667
    [Google Scholar]
  42. AnwarS.M. ParidaA. AtitoS. AwaisM. NinoG. KitlerJ. LinguraruM.G. SPCXR: Self-supervised pretraining using chest x-rays towards a domain specific foundation model.arXiv202310.48550/arXiv.2211.12944
    [Google Scholar]
  43. ChowdhuryM.E.H. RahmanT. KhandakarA. MazharR. KadirM.A. MahbubZ.B. IslamK.R. KhanM.S. IqbalA. EmadiN.A. ReazM.B.I. IslamM.T. Can AI help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/ACCESS.2020.3010287
    [Google Scholar]
  44. Chest x-ray images (pneumonia).Available from: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
  45. MarquesG. AgarwalD. de la Torre DíezI. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network.Appl. Soft Comput.20209610669110.1016/j.asoc.2020.10669133519327
    [Google Scholar]
  46. ShrivastavaP. SinghA. AgarwalS. TekchandaniH. VermaS. Covid detection in CT and x-ray images using ensemble learning.5th International Conference on Computing Methodologies and Communication (ICCMC)Erode, India, 2021, 08-10 Apr. pp. 1085-1090.10.1109/ICCMC51019.2021.9418308
    [Google Scholar]
  47. TangS. WangC. NieJ. KumarN. ZhangY. XiongZ. BarnawiA. EDL-COVID: Ensemble deep learning for COVID-19 case detection from chest x-ray images.IEEE Trans. Industr. Inform.20211796539654910.1109/TII.2021.305768337981915
    [Google Scholar]
  48. VisuñaL. YangD. Garcia-BlasJ. CarreteroJ. Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning.BMC Med. Imaging202222117810.1186/s12880‑022‑00904‑436243705
    [Google Scholar]
  49. HoT.K.K. GwakJ. Feature-level ensemble approach for COVID-19 detection using chest X-ray images.PLoS One2022177e026843010.1371/journal.pone.026843035834442
    [Google Scholar]
  50. SharmaA. SinghK. KoundalD. A novel fusion based convolutional neural network approach for classification of COVID-19 from chest X-ray images.Biomed. Signal Process. Control20227710377810.1016/j.bspc.2022.10377835530169
    [Google Scholar]
  51. GodbinA.B. JasmineS.G. Leveraging radiomics and genetic algorithms to improve lung infection diagnosis in x-ray images using machine learning.IEEE Access202412476564767110.1109/ACCESS.2024.3383781
    [Google Scholar]
  52. CelikG. Detection of Covid-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network.Appl. Soft Comput.109906202313310.1016/j.asoc.2022.109906
    [Google Scholar]
  53. IqbalS. QureshiA.N. LiJ. ChoudhryI.A. MahmoodT. Dynamic learning for imbalanced data in learning chest X-ray and CT images.Heliyon202396e1680710.1016/j.heliyon.2023.e16807
    [Google Scholar]
  54. NahiduzzamanMd. Rabiul IslamMd. ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network.Expert Syst. Appl.211202311857610.1016/j.eswa.2022.118576
    [Google Scholar]
  55. MohanG. SubashiniM.M. BalanS. SinghS. A multiclass deep learning algorithm for healthy lung, Covid-19 and pneumonia disease detection from chest X-ray images.Discov. Artif. Intell.2024412010.1007/s44163‑024‑00110‑x
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056344651241023070250
Loading
/content/journals/cmir/10.2174/0115734056344651241023070250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test