Skip to content
2000
image of Lightweight Lung-nodule Detection Model Combined with Multidimensional Attention Convolution

Abstract

Background:

Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.

Objective:

The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.

Methods:

In this study, based on YOLOv5s, a concentrated-comprehensive convolution (C3_ODC) module with multidimensional attention is designed in the convolutional layer of the original backbone network for enhancing the feature-extraction capabilities of the model. Moreover, lightweight convolution is combined with weighted bidirectional feature pyramid networks (BiFPNs) to form a GS-BiFPN structure that enhances the fusion of multiscale features while reducing the number of model parameters. Finally, Focal Loss is combined with the normalized Wasserstein distance (NWD) to optimize the loss function. Focal loss focuses on carcinoma-positive samples to mitigate class imbalance, whereas the NWD enhances the detection performance of small lung nodules.

Results:

In comparison experiments against the YOLOv5s, the proposed model improved the average precision by 8.7% and reduced the number of parameters and floating-point operations by 5.4% and 8.2%, respectively, while achieving 116.7 frames per second.

Conclusion:

The proposed model balances high detection accuracy against real-time requirements.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056310722241210055412
2025-01-02
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056310722241210055412/e15734056310722.html?itemId=/content/journals/cmir/10.2174/0115734056310722241210055412&mimeType=html&fmt=ahah

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Zhang W. Wang X. Li X. Chen J. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Comput. Biol. Med. 2018 92 64 72 10.1016/j.compbiomed.2017.11.008 29154123
    [Google Scholar]
  3. Kaya A. Can A.B. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J. Biomed. Inform. 2015 56 69 79 10.1016/j.jbi.2015.05.011 26008877
    [Google Scholar]
  4. Chen H. Xiong W. Wu J. Zhuang Q. Yu G. Decision-making model based on ensemble method in auxiliary medical system for non-small cell lung cancer. IEEE Access 2020 8 171903 171911 10.1109/ACCESS.2020.3024840
    [Google Scholar]
  5. Wu J. Tan Y. Chen Z. Zhao M. Decision based on big data research for non-small cell lung cancer in medical artificial system in developing country. Comput. Methods Prog. Biomed. 2018 159 87 101 10.1016/j.cmpb.2018.03.004 29650322
    [Google Scholar]
  6. Ren S. He K. Girshick R. Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017 39 6 1137 1149 10.1109/TPAMI.2016.2577031 27295650
    [Google Scholar]
  7. Jiang P. Ergu D. Liu F. Cai Y. Ma B. A review of Yolo algorithm developments. Procedia Comput. Sci. 2022 199 1066 1073 10.1016/j.procs.2022.01.135
    [Google Scholar]
  8. Liu W. Anguelov D. Erhan D. Szegedy C. Reed S. Fu C.Y. Berg A.C. SSD: Single Shot MultiBox Detector Computer Vision–ECCV 2016. Lecture Notes in Computer Science Cham Springer 2016 21 37
    [Google Scholar]
  9. Ji Z. Wu Y. Zeng X. An Y. Zhao L. Wang Z. Ganchev I. Lung nodule detection in medical images based on improved Yolov5s. IEEE Access 2023 11 76371 76387 10.1109/ACCESS.2023.3296530
    [Google Scholar]
  10. Hongwu Q. Xinyu W. Fei X. Pulmonary nodule detection algorithm based on lightweight improved YOLOv8 network model. Bull. Pacific State Uni. 2024 3 74 35 46
    [Google Scholar]
  11. Shariaty F. Davydov V.V. Yushkova V.V. Glinushkin A.P. Rud V.Y. Automated pulmonary nodule detection system in computed tomography images based on Active-contour and SVM classification algorithm. J. Phys. Conf. Ser. 2019 1410 1 012075 10.1088/1742‑6596/1410/1/012075
    [Google Scholar]
  12. Paing M.P. Hamamoto K. Tungjitkusolmun S. Visitsattapongse S. Pintavirooj C. Automatic detection of pulmonary nodules using three-dimensional chain coding and optimized random forest. Appl. Sci. 2020 10 7 2346 10.3390/app10072346
    [Google Scholar]
  13. He K. Gkioxari G. Dollár P. Girshick R. Mask r-cnn. arXiv:1703.06870 2017 10.48550/arXiv.1703.06870
    [Google Scholar]
  14. Nguyen C.C. Tran G.S. Nguyen V.T. Burie J.C. Nghiem T.P. Pulmonary nodule detection based on faster R-CNN with adaptive anchor box. IEEE Access 2021 9 154740 154751 10.1109/ACCESS.2021.3128942
    [Google Scholar]
  15. Liao J. Li W. Du L.Y. Detection of pulmonary nodule lesions based on improved Mask R-CNN algorithm. International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022) 30 Nov, 2022, Qingdao, China, pp. 1245609. 10.1117/12.2659647
    [Google Scholar]
  16. Han L. Li F. Yu H. Xia K. Xin Q. Zou X. BiRPN-YOLOvX: A weighted bidirectional recursive feature pyramid algorithm for lung nodule detection. J. XRay Sci. Technol. 2023 31 2 301 317 10.3233/XST‑221310 36617767
    [Google Scholar]
  17. Ma J. Li X. Li H. Menze B.H. Liang S. Zhang R. Zheng W.S. group-attention single-shot detector (GA-SSD): Finding pulmonary nodules in large-scale CT images. Proceed. Mach. Learn. Res. 2019 102 358 369
    [Google Scholar]
  18. Redmon J. Divvala S. Girshick R. Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition 2016 779 788 10.1109/CVPR.2016.91
    [Google Scholar]
  19. Yang L.I. Shiqi G.A.O. Lung nodule detection system based on data augmentation and attention mechanism. J. Beijing Uni. Posts. Telecommun. 2022 45 4 25
    [Google Scholar]
  20. Liu Y. Ao Y. Deformable attention mechanism-based YOLOv7 structure for lung nodule detection. J. Supercomput. 2024 80 17 25450 25469 10.1007/s11227‑024‑06381‑6
    [Google Scholar]
  21. Mei S. Jiang H.Q. Ma L. YOLO-lung: A practical detector based on imporved YOLOv4 for pulmonary nodule detection. 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 2021 10.1109/CISP‑BMEI53629.2021.9624373
    [Google Scholar]
  22. Guo N. Bai Z. Multi-scale pulmonary nodule detection by fusion of cascade R-CNN and FPN. 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI) 2021 15 19 10.1109/CCAI50917.2021.9447531
    [Google Scholar]
  23. Yang B. Bender G. Le Q.V. Ngiam J. Condconv: Conditionally parameterized convolutions for efficient inference. Proceedings of the 33rd International Conference on Neural Information Processing Systems 2019 1307 1318
    [Google Scholar]
  24. Chen Y. Dai X. Liu M. Chen D. Yuan L. Liu Z. Dynamic convolution: Attention over convolution kernels. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020 Available from:https://ieeexplore.ieee.org/document/9157588 (accessed on 18-11-2024).
    [Google Scholar]
  25. Li C. Zhou A. Yao A. Omni-dimensional dynamic convolutio. arXiv:2209.07947 2022 10.48550/arXiv.2209.07947
    [Google Scholar]
  26. Lin T.Y. Dollár P. Girshick R. He K. Hariharan B. Belongie S. Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition 2017 2117 2125
    [Google Scholar]
  27. Liu S. Qi L. Qin H. Shi J. Jia J. Path aggregation network for instance segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition 2018 8759 8768
    [Google Scholar]
  28. Tan M. Pang R. Le Q.V. Efficient Det: Scalable and efficient object detection. ArXiv:1911.09070, 2020. 2020 10.48550/arXiv.1911.09070
    [Google Scholar]
  29. Li H. Li J. Wei H. Liu Z. Zhan Z. Ren Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. 2022 Available from:https://arxiv.org/vc/arxiv/papers/2206/2206.02424v1.pdf (accessed on 18-11-2024).
    [Google Scholar]
  30. Zheng Z. Wang P. Liu W. Li J. Ye R. Ren D. Distance-IOU loss: Faster and better learning for bounding box regression. Proc. Conf. AAAI Artif. Intell. 2020 34 7 12993 13000 10.1609/aaai.v34i07.6999
    [Google Scholar]
  31. Zhang Y.F. Ren W. Zhang Z. Jia Z. Wang L. Tan T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022 506 146 157 10.1016/j.neucom.2022.07.042
    [Google Scholar]
  32. Wang J. Xu C. Yang W. Yu L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv:2110.13389 2021 10.48550/arXiv.2110.13389
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056310722241210055412
Loading
/content/journals/cmir/10.2174/0115734056310722241210055412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test