Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

The use of Magnetic Resonance Imaging (MRI) and radiomics improves the management of Prostate Cancer (PCa) and helps in differentiating between clinically insignificant and significant PCa. This study has explored the diagnostic value of radiomic analysis based on functional parameter maps from monoexponential and diffusion kurtosis models in MRI for differentiating between clinically insignificant and significant PCa.

Methods

In total, 105 PCa cases, including 38 clinically insignificant and 67 clinically significant PCa cases, were retrospectively analyzed. The patients were randomly divided into training and testing sets in a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed, and 1,352 radiomic features were extracted from ADC, MD, and MK images. Clinical, radiomic, and clinical–radiomic models were developed and compared using receiver operating characteristic curve analysis, decision curve analysis, and calibration curves.

Results

Clinical variables, such as TPSA, PI-RADS, and FPSA, were identified as independent risk factors for differentiating between clinically insignificant and significant PCa. In radiomics, three features were identified as highly weighted indicators. The clinical–radiomic model based on the clinical and radiomic features demonstrated the highest predictive efficacy for clinically insignificant and significant PCa, with area under the curve values of 0.940 and 0.861 in the training and test sets, respectively.

Conclusion

The predictive model constructed from clinical and radiomic features exhibited substantial diagnostic differentiation capabilities for clinically insignificant and significant PCa. The clinical–radiomic model displayed the highest predictive performance, promising significant contributions to future clinical treatment and assessment of PCa.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056341995240906070046
2024-01-01
2025-07-05
The full text of this item is not currently available.

References

  1. HeJ. ChenW.Q. LiN. CaoW. YeD.W. MaJ.H. XingN.Z. PengJ. TianJ.H. China guideline for the screening and early detection of prostate cancer (2022, Beijing).Zhonghua Zhong Liu Za Zhi2022441295335073647
    [Google Scholar]
  2. EpsteinJ.I. EgevadL. AminM.B. DelahuntB. SrigleyJ.R. HumphreyP.A. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma.Am. J. Surg. Pathol.201640224425210.1097/PAS.000000000000053026492179
    [Google Scholar]
  3. ZhuangH. ChatterjeeA. FanX. QiS. QianW. HeD. A radiomics based method for prediction of prostate cancer gleason score using enlarged region of interest.BMC Med. Imaging202323120510.1186/s12880‑023‑01167‑338066434
    [Google Scholar]
  4. LiJ. WangK. LiS. WuP. WangX. HeY. TangW. Clinical study of multifactorial diagnosis in prostate biopsy.Prostate202383151494150310.1002/pros.2460837545333
    [Google Scholar]
  5. PereraM. JibaraG. TinA.L. HaywoodS. SjobergD.D. BenfanteN.E. CarlssonS.V. EasthamJ.A. LaudoneV. TouijerK.A. FineS. ScardinoP.T. VickersA.J. EhdaieB. Outcomes of grade group 2 and 3 prostate cancer on initial versus confirmatory biopsy: Implications for active surveillance.Eur. Urol. Focus20239466266810.1016/j.euf.2022.12.00836566100
    [Google Scholar]
  6. SinghD. KumarV. DasC.J. SinghA. MehndirattaA. Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images.Comput. Methods Programs Biomed.202019610557210.1016/j.cmpb.2020.10557232544780
    [Google Scholar]
  7. AhmedH.U. El-Shater BosailyA. BrownL.C. GabeR. KaplanR. ParmarM.K. Collaco-MoraesY. WardK. HindleyR.G. FreemanA. KirkhamA.P. OldroydR. ParkerC. EmbertonM. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study.Lancet20173891007181582210.1016/S0140‑6736(16)32401‑128110982
    [Google Scholar]
  8. PalumboP. MartineseA. AntenucciM.R. GranataV. FuscoR. De MuzioF. BruneseM.C. BicciE. BrunoA. BrunoF. GiovagnoniA. GandolfoN. MieleV. Di CesareE. ManettaR. Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer.Gland Surg.202312121806182210.21037/gs‑23‑5338229839
    [Google Scholar]
  9. WangX. TuN. QinT. XingF. WangP. WuG. Diffusion kurtosis imaging combined with DWI at 3-T MRI for detection and assessment of aggressiveness of prostate cancer.AJR Am. J. Roentgenol.2018211479780410.2214/AJR.17.1924930085835
    [Google Scholar]
  10. CavinatoL. PegoraroM. RagniA. SolliniM. ErbaP.A. IevaF. Imaging-based representation and stratification of intra-tumor heterogeneity via tree-edit distance.Sci. Rep.20221211960710.1038/s41598‑022‑23752‑236380083
    [Google Scholar]
  11. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  12. FeretzakisG. Juliebø-JonesP. TsaturyanA. SenerT.E. VerykiosV.S. KarapiperisD. BellosT. KatsimperisS. AngelopoulosP. VarkarakisI. SkolarikosA. SomaniB. TzelvesL. Emerging trends in AI and radiomics for bladder, kidney, and prostate cancer: A critical review.Cancers (Basel)202416481010.3390/cancers1604081038398201
    [Google Scholar]
  13. ZhuX. ShaoL. LiuZ. LiuZ. HeJ. LiuJ. PingH. LuJ. MRI-derived radiomics models for diagnosis, aggressiveness, and prognosis evaluation in prostate cancer.J. Zhejiang Univ. Sci. B202324866368110.1631/jzus.B220061937551554
    [Google Scholar]
  14. HuynhL.M. HwangY. TaylorO. BaineM.J. The use of MRI-Derived radiomic models in prostate cancer risk stratification: A critical review of contemporary literature.Diagnostics (Basel)2023136112810.3390/diagnostics1306112836980436
    [Google Scholar]
  15. AchardV. PutoraP.M. OmlinA. ZilliT. FischerS. Metastatic prostate cancer: Treatment options.Oncology20221001485910.1159/00051986134781285
    [Google Scholar]
  16. SekhoachaM. RietK. MotloungP. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules2717573036080493
    [Google Scholar]
  17. WilliamsI.S.C. McVeyA. PereraS. O’BrienJ.S. KostosL. ChenK. SivaS. AzadA.A. MurphyD.G. KasivisvanathanV. LawrentschukN. FrydenbergM. Modern paradigms for prostate cancer detection and management.Med. J. Aust.2022217842443310.5694/mja2.5172236183329
    [Google Scholar]
  18. SwansonG.P. TrevathanS. HammondsK.A.P. SpeightsV.O. HermansM.R. Gleason score evolution and the effect on prostate cancer outcomes.Am. J. Clin. Pathol.2021155571171710.1093/ajcp/aqaa13033079976
    [Google Scholar]
  19. HammC.A. BaumgärtnerG.L. BiessmannF. BeetzN.L. HartensteinA. SavicL.J. FroböseK. DrägerF. SchallenbergS. RudolphM. BaurA.D.J. HammB. HaasM. HofbauerS. CashH. PenzkoferT. Interactive explainable deep learning model informs prostate cancer diagnosis at MRI.Radiology20233074e22227610.1148/radiol.22227637039688
    [Google Scholar]
  20. TamadaT. UedaY. UenoY. KojimaY. KidoA. YamamotoA. Diffusion-weighted imaging in prostate cancer.Magn. Reson. Mater. Biol. Phys. Med.202135453354710.1007/s10334‑021‑00957‑634491467
    [Google Scholar]
  21. XuL. ZhangG. ShiB. LiuY. ZouT. YanW. XiaoY. XueH. FengF. LeiJ. JinZ. SunH. Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer.Cancer Imaging20191911810.1186/s40644‑019‑0274‑931864408
    [Google Scholar]
  22. YinH. WangD. YanR. JinX. HuY. ZhaiZ. DuanJ. ZhangJ. WangK. HanD. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer.Front. Oncol.20211164090610.3389/fonc.2021.64090633937041
    [Google Scholar]
  23. DuB. QiX. YangH.K. To analyze the value of radiomics based on different diffusion model parameter maps in the early diagnosis of clinically significant prostate cancer by magnetic resonance imaging.Chin J Magn Reson Imaging20241528389
    [Google Scholar]
  24. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  25. HattM. Le RestC.C. TixierF. BadicB. SchickU. VisvikisD. Radiomics: Data are also images.J. Nucl. Med.201960Suppl. 238S44S10.2967/jnumed.118.22058231481588
    [Google Scholar]
  26. SunY. ReynoldsH.M. WraithD. WilliamsS. FinneganM.E. MitchellC. MurphyD. HaworthA. Automatic stratification of prostate tumour aggressiveness using multiparametric MRI: A horizontal comparison of texture features.Acta Oncol.20195881118112610.1080/0284186X.2019.159857630994052
    [Google Scholar]
  27. WangQ. LiH. YanX. WuC.J. LiuX.S. ShiH.B. ZhangY.D. Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic gleason grade of prostate cancer.Urol. Oncol.2015338337.e15337.e2410.1016/j.urolonc.2015.05.00526048104
    [Google Scholar]
  28. ZhangL. ZheX. TangM. ZhangJ. RenJ. ZhangX. LiL. Predicting the grade of prostate cancer based on a biparametric MRI radiomics signature.Contrast Media Mol. Imaging2021202111010.1155/2021/783090935024015
    [Google Scholar]
  29. Di TraniM.G. NezzoM. CaporaleA.S. De FeoR. MianoR. MaurielloA. BoveP. ManentiG. CapuaniS. Performance of diffusion kurtosis imaging versus diffusion tensor imaging in discriminating between benign tissue, low and high gleason grade prostate cancer.Acad. Radiol.201926101328133710.1016/j.acra.2018.11.01530545680
    [Google Scholar]
  30. DuanZQ ZhangK HuJW diffusion kurtosis imaging combined with PSA in the evaluation of prostate cancer aggressiveness.China Medical Equipment20233818891
    [Google Scholar]
  31. ŻurowskaA. PęksaR. GrzywińskaM. PanasD. SowaM. SkrobiszK. MatuszewskiM. SzurowskaE. Comparison of diffusion kurtosis imaging and standard mono-exponential apparent diffusion coefficient in diagnosis of significant prostate cancer-A correlation with gleason score assessed on whole-mount histopathology specimens.Diagnostics (Basel)202313217310.3390/diagnostics1302017336672983
    [Google Scholar]
  32. LiC. ChenM. WanB. YuJ. LiuM. ZhangW. WangJ. A comparative study of Gaussian and non-Gaussian diffusion models for differential diagnosis of prostate cancer with in-bore transrectal MR-guided biopsy as a pathological reference.Acta Radiol.201859111395140210.1177/028418511876096129486596
    [Google Scholar]
  33. WenR. ZhaoW.L. WeiC.G. GuY.F. LiM.J. ZhangY.Y. ShenJ.K. Discussion of correlation between histogram analysis of quantitative diffusion weighted imaging and Gleason score of prostate cancer.Zhonghua Yi Xue Za Zhi2019991182382830893724
    [Google Scholar]
  34. LiuJ.T. ShanW.L. KongD. Value of radiomics based on bi-parametric MRI combined PSA in predicting gleason score of protaste cancer.Journal of Clinical Radiology2023424634638
    [Google Scholar]
  35. KraussW. FreyJ. Heydorn LagerlöfJ. LidénM. ThunbergP. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer.Acta Radiol.202465330731710.1177/0284185123121655538115809
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056341995240906070046
Loading
/content/journals/cmir/10.2174/0115734056341995240906070046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test