Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

There exists a close relationship between liver fibrosis and Hepatocellular Carcinoma (HCC). Prolonged progression of liver fibrosis may ultimately lead to cirrhosis, thereby increasing the risk of developing HCC. Current research is exploring non-invasive methods for assessing liver fibrosis. One such method is the single exponential model Diffusion-weighted Imaging (DWI) sequence, which uses the Apparent Diffusion Coefficient (ADC) to quantify tissue characteristics. However, this method has limitations when it comes to evaluating the degree of liver fibrosis. Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), Stretched Exponential Model (SEM), and Fractional Order Calculus (FROC) have been developed based on traditional single-exponential DWI. These advancements have made diffusion-weighted imaging more specific. However, their imaging principles and application values differ. This article aimed to review the research progress of these DWI-derived sequences in the evaluation of liver fibrosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056326012241031074233
2024-01-01
2025-07-09
The full text of this item is not currently available.

References

  1. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  2. FriedmanS.L. Liver fibrosis – From bench to bedside.J. Hepatol.200338Suppl. 1385310.1016/S0168‑8278(02)00429‑412591185
    [Google Scholar]
  3. YoonJ.H. LeeJ.M. BaekJ.H. ShinC. KieferB. HanJ.K. ChoiB.I. Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI.J. Comput. Assist. Tomogr.201438111011610.1097/RCT.0b013e3182a589be24378888
    [Google Scholar]
  4. Razavi-ShearerD. GamkrelidzeI. NguyenM.H. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: A modelling study.Lancet Gastroenterol. Hepatol.20183638340310.1016/S2468‑1253(18)30056‑629599078
    [Google Scholar]
  5. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  6. ArthurM.J.P. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C.Gastroenterology200212251525152810.1053/gast.2002.3336711984538
    [Google Scholar]
  7. GoceriE. UnluM.Z. GuzelisC. DicleO. An automatic level set based liver segmentation from MRI data sets.20123rd International Conference on Image Processing Theory, Tools and Applications (IPTA)Istanbul, Turkey, 15-18 Oct. 2012, pp. 192-197.10.1109/IPTA.2012.6469551
    [Google Scholar]
  8. BakanA.A. InciE. BakanS. GokturkS. CimilliT. Utility of diffusion-weighted imaging in the evaluation of liver fibrosis.Eur. Radiol.201222368268710.1007/s00330‑011‑2295‑z21984447
    [Google Scholar]
  9. SandrasegaranK. AkisikF.M. LinC. TahirB. RajanJ. SaxenaR. AisenA.M. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis.AJR Am. J. Roentgenol.200919361556156010.2214/AJR.09.243619933647
    [Google Scholar]
  10. De SantisS. GabrielliA. PalomboM. MaravigliaB. CapuaniS. Non-Gaussian diffusion imaging: A brief practical review.Magn. Reson. Imaging201129101410141610.1016/j.mri.2011.04.00621601404
    [Google Scholar]
  11. SeitzH.K. BatallerR. Cortez-PintoH. GaoB. GualA. LacknerC. MathurinP. MuellerS. SzaboG. TsukamotoH. Alcoholic liver disease.Nat. Rev. Dis. Primers2018411610.1038/s41572‑018‑0014‑730115921
    [Google Scholar]
  12. YuenM.F. ChenD.S. DusheikoG.M. JanssenH.L.A. LauD.T.Y. LocarniniS.A. PetersM.G. LaiC.L. Hepatitis B virus infection.Nat. Rev. Dis. Primers2018411803510.1038/nrdp.2018.3529877316
    [Google Scholar]
  13. BruntE.M. WongV.W.S. NobiliV. DayC.P. SookoianS. MaherJ.J. BugianesiE. SirlinC.B. Neuschwander-TetriB.A. RinellaM.E. Nonalcoholic fatty liver disease.Nat. Rev. Dis. Primers2015111508010.1038/nrdp.2015.8027188459
    [Google Scholar]
  14. AffoS. YuL.X. SchwabeR.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer.Annu. Rev. Pathol.201712115318610.1146/annurev‑pathol‑052016‑10032227959632
    [Google Scholar]
  15. HikitaH. KodamaT. ShimizuS. LiW. ShigekawaM. TanakaS. HosuiA. MiyagiT. TatsumiT. KantoT. HiramatsuN. MoriiE. HayashiN. TakeharaT. Bak deficiency inhibits liver carcinogenesis: A causal link between apoptosis and carcinogenesis.J. Hepatol.20125719210010.1016/j.jhep.2012.01.02722414765
    [Google Scholar]
  16. WeberA. BogerR. VickB. UrbanikT. HaybaeckJ. ZollerS. TeufelA. KrammerP.H. OpfermanJ.T. GalleP.R. SchuchmannM. HeikenwalderM. Schulze-BergkamenH. Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice.Hepatology20105141226123610.1002/hep.2347920099303
    [Google Scholar]
  17. SakuraiT. HeG. MatsuzawaA. YuG.Y. MaedaS. HardimanG. KarinM. Hepatocyte necrosis induced by oxidative stress and IL-1 α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis.Cancer Cell200814215616510.1016/j.ccr.2008.06.01618691550
    [Google Scholar]
  18. BaglieriJ. BrennerD.A. KisselevaT. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma.Int. J. Mol. Sci.2019207172310.3390/ijms2007172330959975
    [Google Scholar]
  19. Hernandez-GeaV. FriedmanS.L. Pathogenesis of liver fibrosis.Annu. Rev. Pathol.20116142545610.1146/annurev‑pathol‑011110‑13024621073339
    [Google Scholar]
  20. El-SeragH.B. RudolphK.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis.Gastroenterology200713272557257610.1053/j.gastro.2007.04.06117570226
    [Google Scholar]
  21. RoebE. Matrix metalloproteinases and liver fibrosis (translational aspects).Matrix Biol.201868-6946347310.1016/j.matbio.2017.12.01229289644
    [Google Scholar]
  22. PucheJ.E. SaimanY. FriedmanS.L. Hepatic stellate cells and liver fibrosis.Compr. Physiol.31473149210.1002/cphy.c120035
    [Google Scholar]
  23. TangL. ZhouX.J. Diffusion MRI of cancer: From low to high b-values.J. Magn. Reson. Imaging2019491234010.1002/jmri.2629330311988
    [Google Scholar]
  24. JeromeN.P. OrtonM.R. d’ArcyJ.A. CollinsD.J. KohD.M. LeachM.O. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics.J. Magn. Reson. Imaging201439123524010.1002/jmri.2414023580454
    [Google Scholar]
  25. Le BihanD. BretonE. LallemandD. AubinM.L. VignaudJ. Laval-JeantetM. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology1988168249750510.1148/radiology.168.2.33936713393671
    [Google Scholar]
  26. Le BihanD. What can we see with IVIM MRI?Neuroimage2019187566710.1016/j.neuroimage.2017.12.06229277647
    [Google Scholar]
  27. WangQ. YuG. QiuJ. LuW. Application of intravoxel incoherent motion in clinical liver imaging: A literature review.J. Magn. Reson. Imaging202460241744010.1002/jmri.2908637908165
    [Google Scholar]
  28. LefebvreT. HébertM. BilodeauL. SebastianiG. CernyM. OliviéD. GaoZ.H. SylvestreM.P. CloutierG. NguyenB.N. GilbertG. TangA. Intravoxel incoherent motion diffusion-weighted MRI for the characterization of inflammation in chronic liver disease.Eur. Radiol.20213131347135810.1007/s00330‑020‑07203‑y32876833
    [Google Scholar]
  29. MorenoA.H. BurchellA.R. RousselotL.M. PankeW.F. SlafskyS.F. BurkeJ.H. Portal blood flow in cirrhosis of the liver.J. Clin. Invest.196746343644510.1172/JCI1055456023778
    [Google Scholar]
  30. ChowA.M. GaoD.S. FanS.J. QiaoZ. LeeF.Y. YangJ. ManK. WuE.X. Liver fibrosis: An intravoxel incoherent motion (IVIM) study.J. Magn. Reson. Imaging201236115916710.1002/jmri.2360722334528
    [Google Scholar]
  31. LucianiA. VignaudA. CavetM. Tran Van NhieuJ. MallatA. RuelL. LaurentA. DeuxJ.F. BrugieresP. RahmouniA. Liver cirrhosis: Intravoxel incoherent motion MR imaging--pilot study.Radiology2008249389189910.1148/radiol.249308008019011186
    [Google Scholar]
  32. HuangH. Che-NordinN. WangL.F. XiaoB.H. ChevallierO. YunY.X. GuoS.W. WángY.X.J. High performance of intravoxel incoherent motion diffusion MRI in detecting viral hepatitis-b induced liver fibrosis.Ann. Transl. Med.201973393910.21037/atm.2018.12.3330906743
    [Google Scholar]
  33. MurphyP. HookerJ. AngB. WolfsonT. GamstA. BydderM. MiddletonM. PetersonM. BehlingC. LoombaR. SirlinC. Associations between histologic features of nonalcoholic fatty liver disease (NAFLD) and quantitative diffusion-weighted MRI measurements in adults.J. Magn. Reson. Imaging20154161629163810.1002/jmri.2475525256692
    [Google Scholar]
  34. ZhangY. KuangS. ShanQ. RongD. ZhangZ. YangH. WuJ. ChenJ. HeB. DengY. RobertsN. ShenJ. VenkateshS.K. WangJ. Can IVIM help predict HCC recurrence after hepatectomy?Eur. Radiol.201929115791580310.1007/s00330‑019‑06180‑130972544
    [Google Scholar]
  35. JensenJ.H. HelpernJ.A. RamaniA. LuH. KaczynskiK. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging.Magn. Reson. Med.20055361432144010.1002/mrm.2050815906300
    [Google Scholar]
  36. ShengR.F. WangH.Q. YangL. JinK.P. XieY.H. ChenC.Z. ZengM.S. Diffusion kurtosis imaging and diffusion-weighted imaging in assessment of liver fibrosis stage and necroinflammatory activity.Abdom. Radiol. (N.Y.)20174241176118210.1007/s00261‑016‑0984‑427866239
    [Google Scholar]
  37. LuH. JensenJ.H. RamaniA. HelpernJ.A. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging.NMR Biomed.200619223624710.1002/nbm.102016521095
    [Google Scholar]
  38. XieS. LiQ. ChengY. ZhouL. XiaS. LiJ. ShenW. Differentiating mild and substantial hepatic fibrosis from healthy controls: A comparison of diffusion kurtosis imaging and conventional diffusion-weighted imaging.Acta Radiol.20206181012102010.1177/028418511988956631825764
    [Google Scholar]
  39. AndersonS.W. BarryB. SotoJ. OzonoffA. O’BrienM. JaraH. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling.J. Magn. Reson. Imaging201439482783410.1002/jmri.2423424259401
    [Google Scholar]
  40. LiJ. WangD. ChenT. XieF. LiR. ZhangX. JingZ. YangJ. OuJ. CaoJ. Magnetic resonance diffusion kurtosis imaging for evaluating stage of liver fibrosis in a rabbit model.Acad. Radiol.2019266e90e9710.1016/j.acra.2018.06.01830072289
    [Google Scholar]
  41. PasiczK. PodgórskaJ. JasieniakJ. FabiszewskaE. SkrzyńskiW. Anysz-GrodzickaA. CieszanowskiA. KukołowiczP. GrabskaI. Optimal b-values for diffusion kurtosis imaging of the liver and pancreas in MR examinations.Phys. Med.20196611912310.1016/j.ejmp.2019.09.23831600671
    [Google Scholar]
  42. YoshimaruD. MiyatiT. SuzukiY. HamadaY. MogiN. FunakiA. TabataA. MasunagaA. ShimadaM. TobariM. NishinoT. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study.Magn. Reson. Imaging201847333810.1016/j.mri.2017.11.00129158186
    [Google Scholar]
  43. BennettK.M. SchmaindaK.M. BennettR.T. RoweD.B. LuH. HydeJ.S. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.Magn. Reson. Med.200350472773410.1002/mrm.1058114523958
    [Google Scholar]
  44. LeitãoH.S. DoblasS. GarteiserP. d’AssigniesG. ParadisV. MouriF. GeraldesC.F.G.C. RonotM. Van BeersB.E. Hepatic fibrosis, inflammation, and steatosis: Influence on the MR viscoelastic and diffusion parameters in patients with chronic liver disease.Radiology201728319810710.1148/radiol.201615157027788034
    [Google Scholar]
  45. FuF. LiX. ChenC. BaiY. LiuQ. ShiD. SangJ. WangK. WangM. Non-invasive assessment of hepatic fibrosis: Comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI.Abdom. Radiol. (N.Y.)2020451738210.1007/s00261‑019‑02140‑x31372777
    [Google Scholar]
  46. BennettK.M. HydeJ.S. SchmaindaK.M. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients.Magn. Reson. Med.200656223523910.1002/mrm.2096016929466
    [Google Scholar]
  47. ParkJ.H. SeoN. ChungY.E. KimS.U. ParkY.N. ChoiJ.Y. ParkM.S. KimM.J. Noninvasive evaluation of liver fibrosis: Comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography.Eur. Radiol.20213174813482310.1007/s00330‑020‑07600‑333439321
    [Google Scholar]
  48. SeoN. ChungY.E. ParkY.N. KimE. HwangJ. KimM.J. Liver fibrosis: Stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.Eur. Radiol.20182872812282210.1007/s00330‑017‑5292‑z29404771
    [Google Scholar]
  49. LiY.T. CercueilJ.P. YuanJ. ChenW. LoffroyR. WángY.X.J. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation.Quant. Imaging Med. Surg.201771597810.21037/qims.2017.02.0328275560
    [Google Scholar]
  50. KimH.C. SeoN. ChungY.E. ParkM.S. ChoiJ.Y. KimM.J. Characterization of focal liver lesions using the stretched exponential model: Comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging.Eur. Radiol.20192995111512010.1007/s00330‑019‑06048‑430796578
    [Google Scholar]
  51. LiC. YeJ. PrinceM. PengY. DouW. ShangS. WuJ. LuoX. Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model.Eur. Radiol.202030116022603210.1007/s00330‑020‑07005‑232591883
    [Google Scholar]
  52. SuiY. WangH. LiuG. DamenF.W. WanamakerC. LiY. ZhouX.J. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model.Radiology2015277248949610.1148/radiol.201514215626035586
    [Google Scholar]
  53. ZhouX.J. GaoQ. AbdullahO. MaginR.L. Studies of anomalous diffusion in the human brain using fractional order calculus.Magn. Reson. Med.201063356256910.1002/mrm.2228520187164
    [Google Scholar]
  54. MaginR.L. AbdullahO. BaleanuD. ZhouX.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation.J. Magn. Reson.2008190225527010.1016/j.jmr.2007.11.00718065249
    [Google Scholar]
  55. FengC. WangY. DanG. ZhongZ. KaramanM.M. LiZ. HuD. ZhouX.J. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma.Eur. Radiol.202232289090010.1007/s00330‑021‑08203‑234342693
    [Google Scholar]
  56. ShengR. ZhangY. SunW. JiY. ZengM. YaoX. DaiY. Staging chronic hepatitis B related liver fibrosis with a fractional order calculus diffusion model.Acad. Radiol.202229795196310.1016/j.acra.2021.07.00534429260
    [Google Scholar]
  57. TaouliB. ChouliM. MartinA.J. QayyumA. CoakleyF.V. VilgrainV. Chronic hepatitis: Role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation.J. Magn. Reson. Imaging2008281899510.1002/jmri.2122718581382
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056326012241031074233
Loading
/content/journals/cmir/10.2174/0115734056326012241031074233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test