Skip to content
2000
image of DWI-Derived Sequences: Application in the Evaluation of Liver Fibrosis

Abstract

There exists a close relationship between liver fibrosis and Hepatocellular Carcinoma (HCC). Prolonged progression of liver fibrosis may ultimately lead to cirrhosis, thereby increasing the risk of developing HCC. Current research is exploring non-invasive methods for assessing liver fibrosis. One such method is the single exponential model Diffusion-weighted Imaging (DWI) sequence, which uses the Apparent Diffusion Coefficient (ADC) to quantify tissue characteristics. However, this method has limitations when it comes to evaluating the degree of liver fibrosis. Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), Stretched Exponential Model (SEM), and Fractional Order Calculus (FROC) have been developed based on traditional single-exponential DWI. These advancements have made diffusion-weighted imaging more specific. However, their imaging principles and application values differ. This article aimed to review the research progress of these DWI-derived sequences in the evaluation of liver fibrosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056326012241031074233
2025-01-20
2025-02-19
The full text of this item is not currently available.

References

  1. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Zucman-Rossi J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  2. Friedman S.L. Liver fibrosis – From bench to bedside. J. Hepatol. 2003 38 Suppl. 1 38 53 10.1016/S0168‑8278(02)00429‑4 12591185
    [Google Scholar]
  3. Yoon J.H. Lee J.M. Baek J.H. Shin C. Kiefer B. Han J.K. Choi B.I. Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI. J. Comput. Assist. Tomogr. 2014 38 1 110 116 10.1097/RCT.0b013e3182a589be 24378888
    [Google Scholar]
  4. Razavi-Shearer D. Gamkrelidze I. Nguyen M.H. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: A modelling study. Lancet Gastroenterol. Hepatol. 2018 3 6 383 403 10.1016/S2468‑1253(18)30056‑6 29599078
    [Google Scholar]
  5. Bataller R. Brenner D.A. Liver fibrosis. J. Clin. Invest. 2005 115 2 209 218 10.1172/JCI24282 15690074
    [Google Scholar]
  6. Arthur M.J.P. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002 122 5 1525 1528 10.1053/gast.2002.33367 11984538
    [Google Scholar]
  7. Goceri E. Unlu M.Z. Guzelis C. Dicle O. An automatic level set based liver segmentation from MRI data sets. 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA) Istanbul, Turkey, 15-18 Oct. 2012, pp. 192-197. 10.1109/IPTA.2012.6469551
    [Google Scholar]
  8. Bakan A.A. Inci E. Bakan S. Gokturk S. Cimilli T. Utility of diffusion-weighted imaging in the evaluation of liver fibrosis. Eur. Radiol. 2012 22 3 682 687 10.1007/s00330‑011‑2295‑z 21984447
    [Google Scholar]
  9. Sandrasegaran K. Akisik F.M. Lin C. Tahir B. Rajan J. Saxena R. Aisen A.M. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis. AJR Am. J. Roentgenol. 2009 193 6 1556 1560 10.2214/AJR.09.2436 19933647
    [Google Scholar]
  10. De Santis S. Gabrielli A. Palombo M. Maraviglia B. Capuani S. Non-Gaussian diffusion imaging: A brief practical review. Magn. Reson. Imaging 2011 29 10 1410 1416 10.1016/j.mri.2011.04.006 21601404
    [Google Scholar]
  11. Seitz H.K. Bataller R. Cortez-Pinto H. Gao B. Gual A. Lackner C. Mathurin P. Mueller S. Szabo G. Tsukamoto H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018 4 1 16 10.1038/s41572‑018‑0014‑7 30115921
    [Google Scholar]
  12. Yuen M.F. Chen D.S. Dusheiko G.M. Janssen H.L.A. Lau D.T.Y. Locarnini S.A. Peters M.G. Lai C.L. Hepatitis B virus infection. Nat. Rev. Dis. Primers 2018 4 1 18035 10.1038/nrdp.2018.35 29877316
    [Google Scholar]
  13. Brunt E.M. Wong V.W.S. Nobili V. Day C.P. Sookoian S. Maher J.J. Bugianesi E. Sirlin C.B. Neuschwander-Tetri B.A. Rinella M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015 1 1 15080 10.1038/nrdp.2015.80 27188459
    [Google Scholar]
  14. Affo S. Yu L.X. Schwabe R.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 2017 12 1 153 186 10.1146/annurev‑pathol‑052016‑100322 27959632
    [Google Scholar]
  15. Hikita H. Kodama T. Shimizu S. Li W. Shigekawa M. Tanaka S. Hosui A. Miyagi T. Tatsumi T. Kanto T. Hiramatsu N. Morii E. Hayashi N. Takehara T. Bak deficiency inhibits liver carcinogenesis: A causal link between apoptosis and carcinogenesis. J. Hepatol. 2012 57 1 92 100 10.1016/j.jhep.2012.01.027 22414765
    [Google Scholar]
  16. Weber A. Boger R. Vick B. Urbanik T. Haybaeck J. Zoller S. Teufel A. Krammer P.H. Opferman J.T. Galle P.R. Schuchmann M. Heikenwalder M. Schulze-Bergkamen H. Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 2010 51 4 1226 1236 10.1002/hep.23479 20099303
    [Google Scholar]
  17. Sakurai T. He G. Matsuzawa A. Yu G.Y. Maeda S. Hardiman G. Karin M. Hepatocyte necrosis induced by oxidative stress and IL-1 α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008 14 2 156 165 10.1016/j.ccr.2008.06.016 18691550
    [Google Scholar]
  18. Baglieri J. Brenner D.A. Kisseleva T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int. J. Mol. Sci. 2019 20 7 1723 10.3390/ijms20071723 30959975
    [Google Scholar]
  19. Hernandez-Gea V. Friedman S.L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 2011 6 1 425 456 10.1146/annurev‑pathol‑011110‑130246 21073339
    [Google Scholar]
  20. El-Serag H.B. Rudolph K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007 132 7 2557 2576 10.1053/j.gastro.2007.04.061 17570226
    [Google Scholar]
  21. Roeb E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018 68-69 463 473 10.1016/j.matbio.2017.12.012 29289644
    [Google Scholar]
  22. Puche J.E. Saiman Y. Friedman S.L. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3 1473 1492 10.1002/cphy.c120035
    [Google Scholar]
  23. Tang L. Zhou X.J. Diffusion MRI of cancer: From low to high b‐values. J. Magn. Reson. Imaging 2019 49 1 23 40 10.1002/jmri.26293 30311988
    [Google Scholar]
  24. Jerome N.P. Orton M.R. d’Arcy J.A. Collins D.J. Koh D.M. Leach M.O. Comparison of free‐breathing with navigator‐controlled acquisition regimes in abdominal diffusion‐weighted magnetic resonance images: Effect on ADC and IVIM statistics. J. Magn. Reson. Imaging 2014 39 1 235 240 10.1002/jmri.24140 23580454
    [Google Scholar]
  25. Le Bihan D. Breton E. Lallemand D. Aubin M.L. Vignaud J. Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988 168 2 497 505 10.1148/radiology.168.2.3393671 3393671
    [Google Scholar]
  26. Le Bihan D. What can we see with IVIM MRI? Neuroimage 2019 187 56 67 10.1016/j.neuroimage.2017.12.062 29277647
    [Google Scholar]
  27. Wang Q. Yu G. Qiu J. Lu W. Application of intravoxel incoherent motion in clinical liver imaging: A literature review. J. Magn. Reson. Imaging 2024 60 2 417 440 10.1002/jmri.29086 37908165
    [Google Scholar]
  28. Lefebvre T. Hébert M. Bilodeau L. Sebastiani G. Cerny M. Olivié D. Gao Z.H. Sylvestre M.P. Cloutier G. Nguyen B.N. Gilbert G. Tang A. Intravoxel incoherent motion diffusion-weighted MRI for the characterization of inflammation in chronic liver disease. Eur. Radiol. 2021 31 3 1347 1358 10.1007/s00330‑020‑07203‑y 32876833
    [Google Scholar]
  29. Moreno A.H. Burchell A.R. Rousselot L.M. Panke W.F. Slafsky S.F. Burke J.H. Portal blood flow in cirrhosis of the liver. J. Clin. Invest. 1967 46 3 436 445 10.1172/JCI105545 6023778
    [Google Scholar]
  30. Chow A.M. Gao D.S. Fan S.J. Qiao Z. Lee F.Y. Yang J. Man K. Wu E.X. Liver fibrosis: An intravoxel incoherent motion (IVIM) study. J. Magn. Reson. Imaging 2012 36 1 159 167 10.1002/jmri.23607 22334528
    [Google Scholar]
  31. Luciani A. Vignaud A. Cavet M. Tran Van Nhieu J. Mallat A. Ruel L. Laurent A. Deux J.F. Brugieres P. Rahmouni A. Liver cirrhosis: Intravoxel incoherent motion MR imaging--pilot study. Radiology 2008 249 3 891 899 10.1148/radiol.2493080080 19011186
    [Google Scholar]
  32. Huang H. Che-Nordin N. Wang L.F. Xiao B.H. Chevallier O. Yun Y.X. Guo S.W. Wáng Y.X.J. High performance of intravoxel incoherent motion diffusion MRI in detecting viral hepatitis-b induced liver fibrosis. Ann. Transl. Med. 2019 7 3 39 39 10.21037/atm.2018.12.33 30906743
    [Google Scholar]
  33. Murphy P. Hooker J. Ang B. Wolfson T. Gamst A. Bydder M. Middleton M. Peterson M. Behling C. Loomba R. Sirlin C. Associations between histologic features of nonalcoholic fatty liver disease (NAFLD) and quantitative diffusion‐weighted MRI measurements in adults. J. Magn. Reson. Imaging 2015 41 6 1629 1638 10.1002/jmri.24755 25256692
    [Google Scholar]
  34. Zhang Y. Kuang S. Shan Q. Rong D. Zhang Z. Yang H. Wu J. Chen J. He B. Deng Y. Roberts N. Shen J. Venkatesh S.K. Wang J. Can IVIM help predict HCC recurrence after hepatectomy? Eur. Radiol. 2019 29 11 5791 5803 10.1007/s00330‑019‑06180‑1 30972544
    [Google Scholar]
  35. Jensen J.H. Helpern J.A. Ramani A. Lu H. Kaczynski K. Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005 53 6 1432 1440 10.1002/mrm.20508 15906300
    [Google Scholar]
  36. Sheng R.F. Wang H.Q. Yang L. Jin K.P. Xie Y.H. Chen C.Z. Zeng M.S. Diffusion kurtosis imaging and diffusion-weighted imaging in assessment of liver fibrosis stage and necroinflammatory activity. Abdom. Radiol. (N.Y.) 2017 42 4 1176 1182 10.1007/s00261‑016‑0984‑4 27866239
    [Google Scholar]
  37. Lu H. Jensen J.H. Ramani A. Helpern J.A. Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006 19 2 236 247 10.1002/nbm.1020 16521095
    [Google Scholar]
  38. Xie S. Li Q. Cheng Y. Zhou L. Xia S. Li J. Shen W. Differentiating mild and substantial hepatic fibrosis from healthy controls: A comparison of diffusion kurtosis imaging and conventional diffusion-weighted imaging. Acta Radiol. 2020 61 8 1012 1020 10.1177/0284185119889566 31825764
    [Google Scholar]
  39. Anderson S.W. Barry B. Soto J. Ozonoff A. O’Brien M. Jara H. Characterizing non‐gaussian, high b‐value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J. Magn. Reson. Imaging 2014 39 4 827 834 10.1002/jmri.24234 24259401
    [Google Scholar]
  40. Li J. Wang D. Chen T. Xie F. Li R. Zhang X. Jing Z. Yang J. Ou J. Cao J. Magnetic resonance diffusion kurtosis imaging for evaluating stage of liver fibrosis in a rabbit model. Acad. Radiol. 2019 26 6 e90 e97 10.1016/j.acra.2018.06.018 30072289
    [Google Scholar]
  41. Pasicz K. Podgórska J. Jasieniak J. Fabiszewska E. Skrzyński W. Anysz-Grodzicka A. Cieszanowski A. Kukołowicz P. Grabska I. Optimal b-values for diffusion kurtosis imaging of the liver and pancreas in MR examinations. Phys. Med. 2019 66 119 123 10.1016/j.ejmp.2019.09.238 31600671
    [Google Scholar]
  42. Yoshimaru D. Miyati T. Suzuki Y. Hamada Y. Mogi N. Funaki A. Tabata A. Masunaga A. Shimada M. Tobari M. Nishino T. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study. Magn. Reson. Imaging 2018 47 33 38 10.1016/j.mri.2017.11.001 29158186
    [Google Scholar]
  43. Bennett K.M. Schmainda K.M. Bennett R.T. Rowe D.B. Lu H. Hyde J.S. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn. Reson. Med. 2003 50 4 727 734 10.1002/mrm.10581 14523958
    [Google Scholar]
  44. Leitão H.S. Doblas S. Garteiser P. d’Assignies G. Paradis V. Mouri F. Geraldes C.F.G.C. Ronot M. Van Beers B.E. Hepatic fibrosis, inflammation, and steatosis: Influence on the MR viscoelastic and diffusion parameters in patients with chronic liver disease. Radiology 2017 283 1 98 107 10.1148/radiol.2016151570 27788034
    [Google Scholar]
  45. Fu F. Li X. Chen C. Bai Y. Liu Q. Shi D. Sang J. Wang K. Wang M. Non-invasive assessment of hepatic fibrosis: Comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI. Abdom. Radiol. (N.Y.) 2020 45 1 73 82 10.1007/s00261‑019‑02140‑x 31372777
    [Google Scholar]
  46. Bennett K.M. Hyde J.S. Schmainda K.M. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn. Reson. Med. 2006 56 2 235 239 10.1002/mrm.20960 16929466
    [Google Scholar]
  47. Park J.H. Seo N. Chung Y.E. Kim S.U. Park Y.N. Choi J.Y. Park M.S. Kim M.J. Noninvasive evaluation of liver fibrosis: Comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography. Eur. Radiol. 2021 31 7 4813 4823 10.1007/s00330‑020‑07600‑3 33439321
    [Google Scholar]
  48. Seo N. Chung Y.E. Park Y.N. Kim E. Hwang J. Kim M.J. Liver fibrosis: Stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur. Radiol. 2018 28 7 2812 2822 10.1007/s00330‑017‑5292‑z 29404771
    [Google Scholar]
  49. Li Y.T. Cercueil J.P. Yuan J. Chen W. Loffroy R. Wáng Y.X.J. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant. Imaging Med. Surg. 2017 7 1 59 78 10.21037/qims.2017.02.03 28275560
    [Google Scholar]
  50. Kim H.C. Seo N. Chung Y.E. Park M.S. Choi J.Y. Kim M.J. Characterization of focal liver lesions using the stretched exponential model: Comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging. Eur. Radiol. 2019 29 9 5111 5120 10.1007/s00330‑019‑06048‑4 30796578
    [Google Scholar]
  51. Li C. Ye J. Prince M. Peng Y. Dou W. Shang S. Wu J. Luo X. Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model. Eur. Radiol. 2020 30 11 6022 6032 10.1007/s00330‑020‑07005‑2 32591883
    [Google Scholar]
  52. Sui Y. Wang H. Liu G. Damen F.W. Wanamaker C. Li Y. Zhou X.J. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 2015 277 2 489 496 10.1148/radiol.2015142156 26035586
    [Google Scholar]
  53. Zhou X.J. Gao Q. Abdullah O. Magin R.L. Studies of anomalous diffusion in the human brain using fractional order calculus. Magn. Reson. Med. 2010 63 3 562 569 10.1002/mrm.22285 20187164
    [Google Scholar]
  54. Magin R.L. Abdullah O. Baleanu D. Zhou X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J. Magn. Reson. 2008 190 2 255 270 10.1016/j.jmr.2007.11.007 18065249
    [Google Scholar]
  55. Feng C. Wang Y. Dan G. Zhong Z. Karaman M.M. Li Z. Hu D. Zhou X.J. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma. Eur. Radiol. 2022 32 2 890 900 10.1007/s00330‑021‑08203‑2 34342693
    [Google Scholar]
  56. Sheng R. Zhang Y. Sun W. Ji Y. Zeng M. Yao X. Dai Y. Staging chronic hepatitis B related liver fibrosis with a fractional order calculus diffusion model. Acad. Radiol. 2022 29 7 951 963 10.1016/j.acra.2021.07.005 34429260
    [Google Scholar]
  57. Taouli B. Chouli M. Martin A.J. Qayyum A. Coakley F.V. Vilgrain V. Chronic hepatitis: Role of diffusion‐weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J. Magn. Reson. Imaging 2008 28 1 89 95 10.1002/jmri.21227 18581382
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056326012241031074233
Loading
/content/journals/cmir/10.2174/0115734056326012241031074233
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Incoherent motion ; Fractional order calculus ; Fibrosis ; Kurtosis ; DWI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test