Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Immune checkpoint inhibitor-related pneumonitis (ICI-P) is a fatal adverse event of immunotherapy. However, there is a lack of methods to identify patients who have a high risk of developing ICI-P in immunotherapy.

Purpose

We aim at predicting the individualized risk of developing ICI-P by computed tomography (CT) images and deep learning to assist in personalized immunotherapy planning.

Methods

We first explored the prognostic value of the commonly used clinical factors. Moreover, we proposed a novel whole-lung analysis deep learning (DL) model, which is constructed using a combination of Densely Connected Convolutional Networks (DenseNet) and Feature Pyramid Networks (FPN). This DL model mines global lung information from CT images for predicting the risk of developing ICI-P, and it is fully automated and does not require manually annotating images. Finally, 157 patients were collected and randomly divided into training and testing sets for performance evaluation.

Results

In the testing set, the clinical model achieved an Area Under the Curve (AUC) of 0.710 and accuracy of 0.625. By mining global lung information, the DL model achieved AUC=0.780 and accuracy=0.729 in the testing set, where the DL score revealed a significant difference between ICI-P and non-ICI-P patients. Through deep learning visualization technique, we found that many areas outside of tumor (., pleural retraction, pleural effusion, and the abnormalities in vessels) are important for predicting the risk of developing ICI-P in immunotherapy.

Conclusions

The whole-lung analysis DL model provides an easy-to-use method for identifying patients at high risk of developing ICI-P by CT images, which is important for individualized treatment planning in immunotherapy. The performance improvement over the clinical model indicates that mining whole-lung information in CT images is effective for prognostic prediction in immunotherapy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056314192241002075034
2024-01-01
2025-04-13
The full text of this item is not currently available.

References

  1. HornL. SpigelD.R. VokesE.E. HolgadoE. ReadyN. SteinsM. PoddubskayaE. BorghaeiH. FelipE. Paz-AresL. PluzanskiA. ReckampK.L. BurgioM.A. KohlhäeuflM. WaterhouseD. BarlesiF. AntoniaS. ArrietaO. FayetteJ. CrinòL. RizviN. ReckM. HellmannM.D. GeeseW.J. LiA. Blackwood-ChirchirA. HealeyD. BrahmerJ. EberhardtW.E.E. Nivolumab versus docetaxel in previously treated patients with advanced non–small-cell lung cancer: Two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057).J. Clin. Oncol.201735353924393310.1200/JCO.2017.74.306229023213
    [Google Scholar]
  2. RittmeyerA. BarlesiF. WaterkampD. ParkK. CiardielloF. von PawelJ. GadgeelS.M. HidaT. KowalskiD.M. DolsM.C. CortinovisD.L. LeachJ. PolikoffJ. BarriosC. KabbinavarF. FronteraO.A. De MarinisF. TurnaH. LeeJ.S. BallingerM. KowanetzM. HeP. ChenD.S. SandlerA. GandaraD.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial.Lancet20173891006625526510.1016/S0140‑6736(16)32517‑X27979383
    [Google Scholar]
  3. MartinsF. SofiyaL. SykiotisG.P. LamineF. MaillardM. FragaM. ShabafrouzK. RibiC. CairoliA. Guex-CrosierY. KuntzerT. MichielinO. PetersS. CoukosG. SpertiniF. ThompsonJ.A. ObeidM. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance.Nat. Rev. Clin. Oncol.201916956358010.1038/s41571‑019‑0218‑031092901
    [Google Scholar]
  4. PuzanovI. DiabA. AbdallahK. BinghamC.O.III BrogdonC. DaduR. HamadL. KimS. LacoutureM.E. LeBoeufN.R. LenihanD. OnofreiC. ShannonV. SharmaR. SilkA.W. SkondraD. Suarez-AlmazorM.E. WangY. WileyK. KaufmanH.L. ErnstoffM.S. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.J. Immunother. Cancer2017519510.1186/s40425‑017‑0300‑z29162153
    [Google Scholar]
  5. CadranelJ. CanellasA. MattonL. DarrasonM. ParrotA. NaccacheJ.M. LavoléA. RuppertA.M. FalletV. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall cell lung cancer.Eur. Respir. Rev.20192815319005810.1183/16000617.0058‑201931597674
    [Google Scholar]
  6. SureshK. NaidooJ. LinC.T. DanoffS. Immune checkpoint immunotherapy for non-small cell lung cancer:Benefits and pulmonary toxicities.Chest201815461416142310.1016/j.chest.2018.08.104830189190
    [Google Scholar]
  7. NishinoM. ShollL.M. HatabuH. RamaiyaN.H. HodiF.S. Anti–PD-1–Related Pneumonitis during Cancer Immunotherapy.N. Engl. J. Med.2015373328829010.1056/NEJMc150519726176400
    [Google Scholar]
  8. WangD.Y. SalemJ.E. CohenJ.V. ChandraS. MenzerC. YeF. ZhaoS. DasS. BeckermannK.E. HaL. RathmellW.K. AncellK.K. BalkoJ.M. BowmanC. DavisE.J. ChismD.D. HornL. LongG.V. CarlinoM.S. Lebrun-VignesB. ErogluZ. HasselJ.C. MenziesA.M. SosmanJ.A. SullivanR.J. MoslehiJ.J. JohnsonD.B. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis.JAMA Oncol.20184121721172810.1001/jamaoncol.2018.392330242316
    [Google Scholar]
  9. SearsC.R. PeikertT. PossickJ.D. NaidooJ. NishinoM. PatelS.P. CamusP. GagaM. GaronE.B. GouldM.K. LimperA.H. MontgrainP.R. TravisW.D. RiveraM.P. Knowledge gaps and research priorities in immune checkpoint Inhibitor–related pneumonitis. An official American thoracic Society research statement.Am. J. Respir. Crit. Care Med.20192006e31e4310.1164/rccm.201906‑1202ST31518182
    [Google Scholar]
  10. ShankarB. ZhangJ. NaqashA.R. FordeP.M. FelicianoJ.L. MarroneK.A. EttingerD.S. HannC.L. BrahmerJ.R. RicciutiB. OwenD. ToiY. WalkerP. OttersonG.A. PatelS.H. SugawaraS. NaidooJ. Multisystem Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors for Treatment of Non–Small Cell Lung Cancer.JAMA Oncol.20206121952195610.1001/jamaoncol.2020.501233119034
    [Google Scholar]
  11. SureshK. VoongK.R. ShankarB. FordeP.M. EttingerD.S. MarroneK.A. KellyR.J. HannC.L. LevyB. FelicianoJ.L. BrahmerJ.R. Feller-KopmanD. LernerA.D. LeeH. YarmusL. D’AlessioF. HalesR.K. LinC.T. PsoterK.J. DanoffS.K. NaidooJ. Pneumonitis in non–small cell lung cancer patients receiving immune checkpoint immunotherapy: Incidence and risk factors.J. Thorac. Oncol.201813121930193910.1016/j.jtho.2018.08.203530267842
    [Google Scholar]
  12. YamaguchiT. ShimizuJ. OyaY. WatanabeN. HasegawaT. HorioY. InabaY. FujiwaraY. Risk factors for pneumonitis in patients with non-small cell lung cancer treated with immune checkpoint inhibitors plus chemotherapy: A retrospective analysis.Thorac. Cancer202213572473110.1111/1759‑7714.1430835044093
    [Google Scholar]
  13. BeraK. BramanN. GuptaA. VelchetiV. MadabhushiA. Predicting cancer outcomes with radiomics and artificial intelligence in radiology.Nat. Rev. Clin. Oncol.202219213214610.1038/s41571‑021‑00560‑734663898
    [Google Scholar]
  14. HuangE.P. O’ConnorJ.P.B. McShaneL.M. GigerM.L. LambinP. KinahanP.E. SiegelE.L. ShankarL.K. Criteria for the translation of radiomics into clinically useful tests.Nat. Rev. Clin. Oncol.202284114214336443594
    [Google Scholar]
  15. SunR. LimkinE.J. VakalopoulouM. DercleL. ChampiatS. HanS.R. VerlingueL. BrandaoD. LanciaA. AmmariS. HollebecqueA. ScoazecJ.Y. MarabelleA. MassardC. SoriaJ.C. RobertC. ParagiosN. DeutschE. FertéC. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study.Lancet Oncol.20181991180119110.1016/S1470‑2045(18)30413‑330120041
    [Google Scholar]
  16. BreitH.C. Varga-SzemesA. SchoepfU.J. EmrichT. AldingerJ. KressigR.W. BeerliN. Andreas BuserT. BreilD. DeraniI. BridenbaughS. GillC. FischerA.M. CNN-based evaluation of bone density improves diagnostic performance to detect osteopenia and osteoporosis in patients with non-contrast chest CT examinations.Eur. J. Radiol.202316111072810.1016/j.ejrad.2023.11072836773426
    [Google Scholar]
  17. CuiX. ZhengS. HeuvelmansM.A. DuY. SidorenkovG. FanS. LiY. XieY. ZhuZ. DorriusM.D. ZhaoY. VeldhuisR.N.J. de BockG.H. OudkerkM. van OoijenP.M.A. VliegenthartR. YeZ. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program.Eur. J. Radiol.202214611006810.1016/j.ejrad.2021.11006834871936
    [Google Scholar]
  18. WangS. ShiJ. YeZ. DongD. YuD. ZhouM. LiuY. GevaertO. WangK. ZhuY. ZhouH. LiuZ. TianJ. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.Eur. Respir. J.2019533180098610.1183/13993003.00986‑201830635290
    [Google Scholar]
  19. XuY. HosnyA. ZeleznikR. ParmarC. CorollerT. FrancoI. MakR.H. AertsH.J.W.L. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging.Clin. Cancer Res.201925113266327510.1158/1078‑0432.CCR‑18‑249531010833
    [Google Scholar]
  20. MuW. JiangL. ShiY. TunaliI. GrayJ.E. KatsoulakisE. TianJ. GilliesR.J. SchabathM.B. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images.J. Immunother. Cancer202196e00211810.1136/jitc‑2020‑00211834135101
    [Google Scholar]
  21. HeB. DongD. SheY. ZhouC. FangM. ZhuY. ZhangH. HuangZ. JiangT. TianJ. ChenC. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker.J. Immunother. Cancer202082e00055010.1136/jitc‑2020‑00055032636239
    [Google Scholar]
  22. MuW. JiangL. ZhangJ. ShiY. GrayJ.E. TunaliI. GaoC. SunY. TianJ. ZhaoX. SunX. GilliesR.J. SchabathM.B. Non-invasive decision support for NSCLC treatment using PET/CT radiomics.Nat. Commun.2020111522810.1038/s41467‑020‑19116‑x33067442
    [Google Scholar]
  23. WangS. ZhaY. LiW. WuQ. LiX. NiuM. WangM. QiuX. LiH. YuH. GongW. BaiY. LiL. ZhuY. WangL. TianJ. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis.Eur. Respir. J.2020562200077510.1183/13993003.00775‑202032444412
    [Google Scholar]
  24. WangS. YuH. GanY. WuZ. LiE. LiX. CaoJ. ZhuY. WangL. DengH. XieM. WangY. MaX. LiuD. ChenB. TianP. QiuZ. XianJ. RenJ. WangK. WeiW. XieF. LiZ. WangQ. XueX. LiuZ. ShiJ. LiW. TianJ. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: A multicohort study.Lancet Digit. Health202245e309e31910.1016/S2589‑7500(22)00024‑335341713
    [Google Scholar]
  25. HuangG. LiuZ. van der MaatenL. WeinbergerK.Q. Densely Connected Convolutional Networks.30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)2017 Jul 21-26Honolulu, HI22612269
    [Google Scholar]
  26. LinT-Y. DollárP. GirshickR. HeK. HariharanB. BelongieS. Feature pyramid networks for object detection.Proceedings of the IEEE conference on computer vision and pattern recognition201721172125
    [Google Scholar]
  27. RudyantoR.D. KerkstraS. van RikxoortE.M. FetitaC. BrilletP.Y. LefevreC. XueW. ZhuX. LiangJ. Öksüzİ. ÜnayD. KadipaşaogˇluK. EstéparR.S.J. RossJ.C. WashkoG.R. PrietoJ.C. HoyosM.H. OrkiszM. MeineH. HüllebrandM. StöckerC. MirF.L. NaranjoV. VillanuevaE. StaringM. XiaoC. StoelB.C. FabijanskaA. SmistadE. ElsterA.C. LindsethF. ForuzanA.H. KirosR. PopuriK. CobzasD. Jimenez-CarreteroD. SantosA. Ledesma-CarbayoM.J. HelmbergerM. UrschlerM. PiennM. BosboomD.G.H. CampoA. ProkopM. de JongP.A. Ortiz-de-SolorzanoC. Muñoz-BarrutiaA. van GinnekenB. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study.Med. Image Anal.20141871217123210.1016/j.media.2014.07.00325113321
    [Google Scholar]
  28. VoongK.R. HazellS. HuC. HaymanJ. HalesR. MarroneK. HannC. EttingerD. FelicianoJ. RoweV. KellyR. BrahmerJ. FordeP. NaidooJ. MA 09.08 receipt of chest radiation and immune-related pneumonitis in patients with NSCLC treated with anti-PD-1/PD-L1.J. Thorac. Oncol.20171211S183710.1016/j.jtho.2017.09.529
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056314192241002075034
Loading
/content/journals/cmir/10.2174/0115734056314192241002075034
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test