Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Introduction

In this study, we harnessed three cutting-edge algorithms' capabilities to refine the elbow fracture prediction process through X-ray image analysis. Employing the YOLOv8 (You only look once) algorithm, we first identified Regions of Interest (ROI) within the X-ray images, significantly augmenting fracture prediction accuracy.

Methods

Subsequently, we integrated and compared the ResNet, the SeResNet (Squeeze-and-Excitation Residual Network) ViT (Vision Transformer) algorithms to refine our predictive capabilities. Furthermore, to ensure optimal precision, we implemented a series of meticulous refinements. This included recalibrating ROI regions to enable finer-grained identification of diagnostically significant areas within the X-ray images. Additionally, advanced image enhancement techniques were applied to optimize the X-ray images' visual quality and structural clarity.

Results

These methodological enhancements synergistically contributed to a substantial improvement in the overall accuracy of our fracture predictions. The dataset utilized for training, testing & validation, and comprehensive evaluation exclusively comprised elbow X-ray images, where predicting the fracture with three algorithms: Resnet50; accuracy 0.97, precision 1, recall 0.95, SeResnet50; accuracy 0.97, precision 1, recall 0.95 & ViT-B-16 with high accuracy of 0.99, precision same as the other two algorithms, with a recall of 0.95.

Conclusion

This approach has the potential to increase the precision of diagnoses, lessen the burden of radiologists, easily integrate into current medical imaging systems, and assist clinical decision-making, all of which could lead to better patient care and health outcomes overall.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056309890240912054616
2024-01-01
2025-04-06
The full text of this item is not currently available.

References

  1. SaeedW. WaseemM. Elbow Fractures OverviewStatPearls2023
    [Google Scholar]
  2. MidtgaardK.S. RuzbarskyJ.J. HackettT.R. ViolaR.W. Elbow Fractures.Clin. Sports Med.202039362363610.1016/j.csm.2020.03.00232446579
    [Google Scholar]
  3. KuoR.Y. HarrisonC. CurranT.A. JonesB. FreethyA. CussonsD. StewartM. CollinsG.S. FurnissD. Artificial intelligence in fracture detection: a systematic review and meta-analysis.Radiology20223041506210.1148/radiol.21178535348381
    [Google Scholar]
  4. KimD.H. MacKinnonT. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.Clin. Radiol.201873543944510.1016/j.crad.2017.11.01529269036
    [Google Scholar]
  5. KohliM. PrevedelloL.M. FiliceR.W. GeisJ.R. Implementing machine learning in radiology practice and research.AJR Am. J. Roentgenol.2017208475476010.2214/AJR.16.1722428125274
    [Google Scholar]
  6. YangW. WangF. Multislice spiral computed tomography postprocessing technology in the imaging diagnosis of extremities and joints.Computational and Mathematical Methods in MedicineWiley2021
    [Google Scholar]
  7. GuanB. ZhangG. YaoJ. WangX. WangM. Arm fracture detection in X-rays based on improved deep convolutional neural network.Comput. Electr. Eng.20208110653010.1016/j.compeleceng.2019.106530
    [Google Scholar]
  8. HussainT. ShounoH. Explainable deep learning approach for multi-class brain magnetic resonance imaging tumor classification and localization using gradient-weighted class activation mapping.Information2023141264210.3390/info14120642
    [Google Scholar]
  9. HussainT. ShounoH. MAGRes-UNet: Improved medical image segmentation through a deep learning paradigm of multi-attention gated residual u-net.IEEE Access202412402904031010.1109/ACCESS.2024.3374108
    [Google Scholar]
  10. AlamT. ShiaW.C. HsuF.R. HassanT. Improving breast cancer detection and diagnosis through semantic segmentation using the Unet3+ deep learning framework.Biomedicines2023116153610.3390/biomedicines1106153637371631
    [Google Scholar]
  11. XiaL. ZhangH. WuY. SongR. MaY. MouL. LiuJ. XieY. MaM. ZhaoY. 3D vessel-like structure segmentation in medical images by an edge-reinforced network.Med. Image Anal.20228210258110.1016/j.media.2022.10258136058052
    [Google Scholar]
  12. ZhaoC. XiangS. WangY. CaiZ. ShenJ. ZhouS. ZhaoD. SuW. GuoS. LiS. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium.Expert Syst. Appl.202321411910510.1016/j.eswa.2022.119105
    [Google Scholar]
  13. SharmaS. Artificial intelligence for fracture diagnosis in orthopedic X-rays: current developments and future potential.SICOT-J20239112
    [Google Scholar]
  14. DeoG. TotlaniJ. MahamuniC.V. A survey on bone fracture detection methods using image processing and artificial intelligence (AI) approachesAIP Conference ProceedingsAIP Publishing2024280210.1063/5.0188460
    [Google Scholar]
  15. Azizzadeh Mehmandost OlyaB. MohebianR. BagheriH. Mahdavi HezavehA. Khan MohammadiA. Toward real-time fracture detection on image logs using deep convolutional neural network YOLOv5.Interpretation2024122SB9SB1810.1190/INT‑2022‑0104.1
    [Google Scholar]
  16. MedaramatlaS.C. SamhithaC.V. PandeS.D. VintaS.R. Detection of hand bone fractures in x-ray images using hybrid YOLO NAS.IEEE Access202412576615767310.1109/ACCESS.2024.3379760
    [Google Scholar]
  17. MalikS. AminJ. SharifM. YasminM. KadryS. AnjumS. Fractured elbow classification using hand-crafted and deep feature fusion and selection based on whale optimization approach.Mathematics20221018329110.3390/math10183291
    [Google Scholar]
  18. LiJ. HuW. WuH. ChenZ. ChenJ. LaiQ. WangY. LiY. Detection of hidden pediatric elbow fractures in X-ray images based on deep learning.J. Rad. Rese. Appl. Sci.202417210089310.1016/j.jrras.2024.100893
    [Google Scholar]
  19. El-SaadawyH. TantawiM.M. ShedeedH.A. TolbaM.F. A two-stage method for bone x-rays abnormality detection using mobilenet network.In International Conferences on Artificial Intelligence and Computer VisionSpringer, Cham, 24 March 2020, pp 372–380.10.1007/978‑3‑030‑44289‑7_35
    [Google Scholar]
  20. WarinK. LimprasertW. SuebnukarnS. InglamS. JantanaP. VicharueangS. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs.Int. J. Oral Maxillofac. Surg.202251111488149410.1016/j.ijom.2022.03.05635397969
    [Google Scholar]
  21. Ashkani-EsfahaniS. Mojahed YazdiR. BhimaniR. KerkhoffsG.M. MaasM. DiGiovanniC.W. LubbertsB. GussD. Detection of ankle fractures using deep learning algorithms.Foot Ankle Surg.20222881259126510.1016/j.fas.2022.05.00535659710
    [Google Scholar]
  22. HeJ. JiangD. Fully automatic model based on se-resnet for bone age assessment.IEEE Access20219624606246610.1109/ACCESS.2021.3074713
    [Google Scholar]
  23. TanziL. AudisioA. CirrincioneG. ApratoA. VezzettiE. Vision transformer for femur fracture classification.Injury20225372625263410.1016/j.injury.2022.04.01335469638
    [Google Scholar]
  24. BloiceM.D. StockerC. HolzingerA. Augmentor: an image augmentation library for machine learningpreprint arXiv:1708.046802017Aug 4
    [Google Scholar]
  25. Pérez-GarcíaF. SparksR. OurselinS. TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.Comput. Methods Programs Biomed.202120810623610.1016/j.cmpb.2021.10623634311413
    [Google Scholar]
  26. VasukiP. KanimozhiJ. DeviM.B. A survey on image preprocessing techniques for diverse fields of medical imagery2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE)Karur, India, 27-28 April 2017, pp. 1-6.10.1109/ICEICE.2017.8192443
    [Google Scholar]
  27. InuiA. MifuneY. NishimotoH. MukoharaS. FukudaS. KatoT. FurukawaT. TanakaS. KusunoseM. TakigamiS. EharaY. KurodaR. Detection of elbow OCD in the ultrasound image by artificial intelligence using YOLOv8.Appl. Sci.20231313762310.3390/app13137623
    [Google Scholar]
  28. LuS. WangS. WangG. Automated universal fractures detection in X-ray images based on deep learning approach.Multimed. Tools Appl.20228130444874450310.1007/s11042‑022‑13287‑z
    [Google Scholar]
  29. WeiZ. NaM. HuishengS. HongqiF. Feature extraction of X-ray fracture image and fracture classification2009 International Conference on Artificial Intelligence and Computational IntelligenceShanghai, China, 07-08 November 2009, pp. 408-412.10.1109/AICI.2009.40
    [Google Scholar]
  30. JoshiD. SinghT.P. A survey of fracture detection techniques in bone X-ray images.Artif. Intell. Rev.20205364475451710.1007/s10462‑019‑09799‑0
    [Google Scholar]
  31. UysalF. HardalaçF. PekerO. TolunayT. TokgözN. Classification of shoulder x-ray images with deep learning ensemble models.Appl. Sci.2021116272310.3390/app11062723
    [Google Scholar]
  32. ThianY.L. LiY. JagmohanP. SiaD. ChanV.E. TanR.T. Convolutional neural networks for automated fracture detection and localization on wrist radiographs.Radiol. Artif. Intell.201911e18000110.1148/ryai.201918000133937780
    [Google Scholar]
  33. SkaggsD. PershadJ. Pediatric elbow trauma.Pediatr. Emerg. Care199713642543410.1097/00006565‑199712000‑000219435010
    [Google Scholar]
  34. RayanJ.C. ReddyN. KanJ.H. ZhangW. AnnapragadaA. Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making.Radiol. Artif. Intell.201911e18001510.1148/ryai.201918001533937781
    [Google Scholar]
  35. SgualdinoD.G. NeepM.J. SpuurK. HughesC. Is there benefit to concurrent x‐ray imaging of the wrist, forearm and elbow in paediatric patients following a fall on the outstretched hand?J. Med. Radiat. Sci.202269443143810.1002/jmrs.61435973970
    [Google Scholar]
  36. PranataY.D. WangK.C. WangJ.C. IdramI. LaiJ.Y. LiuJ.W. HsiehI.H. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images.Comput. Methods Programs Biomed.2019171273710.1016/j.cmpb.2019.02.00630902248
    [Google Scholar]
  37. LennonR.I. RiyatM.S. HilliamR. AnathkrishnanG. AldersonG. Can a normal range of elbow movement predict a normal elbow x ray?Emerg. Med. J.2007242868810.1136/emj.2006.03979217251609
    [Google Scholar]
  38. LagunaB. LivingstonK. BrarR. JagodzinskiJ. PandyaN. SabatiniC. CourtierJ. Assessing the value of a novel augmented reality application for presurgical planning in adolescent elbow fractures.Front. Virt. Real.2020152881010.3389/frvir.2020.528810
    [Google Scholar]
  39. ShenD. WuG. SukH.I. Deep learning in medical image analysis.Annu. Rev. Biomed. Eng.201719122124810.1146/annurev‑bioeng‑071516‑04444228301734
    [Google Scholar]
  40. RundoL. TangherloniA. NobileM.S. MilitelloC. BesozziD. MauriG. CazzanigaP. MedGA: A novel evolutionary method for image enhancement in medical imaging systems.Expert Syst. Appl.201911938739910.1016/j.eswa.2018.11.013
    [Google Scholar]
  41. KalyankarA. HarkudeG. A. SumanthL. S. Modeling radiologist decision making for paediatric elbow fractures by deep learning multiview.IJRASET202310.22214/ijraset.2023.50583
    [Google Scholar]
  42. SonnowL. SalimovaN. BehrendtL. WackerF.K. ÖrgelM. PlaggeJ. WeidemannF. Photon-counting CT of elbow joint fractures: image quality in a simulated post-trauma setting with off-center positioning.Eur. Radiol. Exp.2023711510.1186/s41747‑023‑00329‑w36967394
    [Google Scholar]
  43. SirishaU. ChandanaB.S. Privacy preserving image encryption with optimal deep transfer learning based accident severity classification model.Sensors202323151910.3390/s2301051936617116
    [Google Scholar]
  44. JuR.Y. CaiW. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithmarXiv:2304.05071161120231312007710.1038/s41598‑023‑47460‑7
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056309890240912054616
Loading
/content/journals/cmir/10.2174/0115734056309890240912054616
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Fracture; Medical images; ResNet; ROI; SeResNet; Vision transformer; X-ray; YOLO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test