Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

The aim of the study was to develop deep-learning neural networks to guide treatment decisions and for the accurate evaluation of tumor response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer using magnetic resonance (MR) images.

Methods

Fifty-nine tumors with stage 2 or 3 rectal cancer that received nCRT were retrospectively evaluated. Pathological tumor regression grading was carried out using the Dworak (Dw-TRG) guidelines and served as the ground truth for response predictions. Imaging-based tumor regression grading was performed according to the MERCURY group guidelines from pre-treatment and post-treatment para-axial T2-weighted MR images (MR-TRG). Tumor signal intensity signatures were extracted by segmenting the tumors volumetrically on the images. Normalized histograms of the signatures were used as input to a deep neural network (DNN) housing long short-term memory (LSTM) units. The output of the network was the tumor regression grading prediction, DNN-TRG.

Results

In predicting complete or good response, DNN-TRG demonstrated modest agreement with Dw-TRG (Cohen’s kappa= 0.79) and achieved 84.6% sensitivity, 93.9% specificity, and 89.8% accuracy. MR-TRG revealed 46.2% sensitivity, 100% specificity, and 76.3% accuracy. In predicting a complete response, DNN-TRG showed slight agreement with Dw-TRG (Cohen’s kappa= 0.75) with 71.4% sensitivity, 97.8% specificity, and 91.5% accuracy. MR-TRG provided 42.9% sensitivity, 100% specificity, and 86.4% accuracy. DNN-TRG benefited from higher sensitivity but lower specificity, leading to higher accuracy than MR-TRG in predicting tumor response.

Conclusion

The use of deep LSTM neural networks is a promising approach for evaluating the tumor response to nCRT in rectal cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056309748240509072222
2024-01-01
2025-06-22
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. HorvatN. VeeraraghavanH. KhanM. BlazicI. ZhengJ. CapanuM. SalaE. Garcia-AguilarJ. GollubM.J. PetkovskaI. MR imaging of rectal cancer: Radiomics analysis to assess treatment response after neoadjuvant therapy.Radiology2018287383384310.1148/radiol.201817230029514017
    [Google Scholar]
  3. OronskyB. ReidT. LarsonC. KnoxS.J. Locally advanced rectal cancer: The past, present, and future.Semin. Oncol.2020471859210.1053/j.seminoncol.2020.02.00132147127
    [Google Scholar]
  4. GlimeliusB. TiretE. CervantesA. ArnoldD. Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201324Suppl. 6vi81vi8810.1093/annonc/mdt24024078665
    [Google Scholar]
  5. PakH. MaghsoudiL.H. SoltanianA. GholamiF. Surgical complications in colorectal cancer patients.Ann. Med. Surg. (Lond.)202055131810.1016/j.amsu.2020.04.02432435475
    [Google Scholar]
  6. DixonL.K. BiggsS. MessengerD. ShabbirJ. Surgical site infection prevention bundle in elective colorectal surgery.J. Hosp. Infect.202212216216710.1016/j.jhin.2022.01.02335151765
    [Google Scholar]
  7. FalconerR. RamsayG. HudsonJ. WatsonA. Reducing surgical site infection rates in colorectal surgery – a quality improvement approach to implementing a comprehensive bundle.Colorectal Dis.202123112999300710.1111/codi.1587534396654
    [Google Scholar]
  8. TurnerM. MigalyJ. Surgical site infection: The clinical and economic impact.Clin. Colon Rectal Surg.201932315716510.1055/s‑0038‑167700231061644
    [Google Scholar]
  9. ZhangX. WangZ. ChenJ. WangP. LuoS. XuX. MaiW. LiG. WangG. WuX. RenJ. Incidence and risk factors of surgical site infection following colorectal surgery in China: A national cross-sectional study.BMC Infect. Dis.202020183710.1186/s12879‑020‑05567‑633183253
    [Google Scholar]
  10. MaasM. Beets-TanR.G.H. LambregtsD.M.J. LammeringG. NelemansP.J. EngelenS.M.E. van DamR.M. JansenR.L.H. SosefM. LeijtensJ.W.A. HulsewéK.W.E. BuijsenJ. BeetsG.L. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer.J. Clin. Oncol.201129354633464010.1200/JCO.2011.37.717622067400
    [Google Scholar]
  11. O’NeillB.D.P. BrownG. HealdR.J. CunninghamD. TaitD.M. Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer.Lancet Oncol.20078762563310.1016/S1470‑2045(07)70202‑417613424
    [Google Scholar]
  12. HarewoodG.C. KumarK.S. ClainJ. LevyM.J. NelsonH. Clinical implications of quantification of mesorectal tumor invasion by endoscopic ultrasound: All T3 rectal cancers are not equal.J. Gastroenterol. Hepatol.200419775075510.1111/j.1440‑1746.2004.03356.x15209620
    [Google Scholar]
  13. EsclapezP. Garcia-GraneroE. FlorB. García-BotelloS. CervantesA. NavarroS. LledóS. Prognostic heterogeneity of endosonographic T3 rectal cancer.Dis. Colon Rectum200952468569110.1007/DCR.0b013e31819ed03d19404075
    [Google Scholar]
  14. ZhuH.T. ZhangX.Y. ShiY.J. LiX.T. SunY.S. A deep learning model to predict the response to neoadjuvant chemoradiotherapy by the pretreatment apparent diffusion coefficient images of locally advanced rectal cancer.Front. Oncol.20201057433710.3389/fonc.2020.57433733194680
    [Google Scholar]
  15. GollinsS. WestN. Sebag-MontefioreD. SusnerwalaS. FalkS. BrownN. SaundersM. QuirkeP. RayR. ParsonsP. GriffithsG. MaughanT. AdamsR. HurtC. A prospective phase II study of pre-operative chemotherapy then short-course radiotherapy for high risk rectal cancer: COPERNICUS.Br. J. Cancer2018119669770610.1038/s41416‑018‑0209‑430116024
    [Google Scholar]
  16. PatelU.B. BrownG. RuttenH. WestN. Sebag-MontefioreD. Glynne-JonesR. RullierE. PeetersM. Van CutsemE. RicciS. Van de VeldeC. KjellP. QuirkeP. Comparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancer.Ann. Surg. Oncol.20121992842285210.1245/s10434‑012‑2309‑322526897
    [Google Scholar]
  17. Al-SukhniE. MilotL. FruitmanM. BeyeneJ. VictorJ.C. SchmockerS. BrownG. McLeodR. KennedyE. Diagnostic accuracy of MRI for assessment of T category, lymph node metastases, and circumferential resection margin involvement in patients with rectal cancer: A systematic review and meta-analysis.Ann. Surg. Oncol.20121972212222310.1245/s10434‑011‑2210‑522271205
    [Google Scholar]
  18. MemonS. LynchA.C. BresselM. WiseA.G. HeriotA.G. Systematic review and meta‐analysis of the accuracy of MRI and endorectal ultrasound in the restaging and response assessment of rectal cancer following neoadjuvant therapy.Colorectal Dis.201517974876110.1111/codi.1297625891148
    [Google Scholar]
  19. HötkerA.M. TarlintonL. MazaheriY. WooK.M. GönenM. SaltzL.B. GoodmanK.A. Garcia-AguilarJ. GollubM.J. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters.Eur. Radiol.201626124303431210.1007/s00330‑016‑4283‑926945761
    [Google Scholar]
  20. BrownG. RadcliffeA.G. NewcombeR.G. DallimoreN.S. BourneM.W. WilliamsG.T. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging.Br. J. Surg.200390335536410.1002/bjs.403412594673
    [Google Scholar]
  21. QureshiP.A.A.A. AleemJ. MushtaqN. NoorM.A. Khalid NiaziI. AltafM.O. Role of Diffusion-weighted imaging in the evaluation of post-treatment tumor response in rectal carcinoma.Cureus2021138e1747110.7759/cureus.1747134589364
    [Google Scholar]
  22. KartalM.G. AzamatS. KaramanŞ. AzamatI.F. ErtaşG. KulleC.B. KeskinM. SakinR.N.D. BakırB. OralE.N. Complete response evaluation of locally advanced rectal cancer to neoadjuvant chemoradiotherapy using textural features obtained from T2 weighted imaging and ADC maps.Curr. Med. Imaging Rev.202218101061106910.2174/157340561866622030311102635240976
    [Google Scholar]
  23. De CeccoC.N. GaneshanB. CiolinaM. RengoM. MeinelF.G. MusioD. De FeliceF. RaffettoN. TomboliniV. LaghiA. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance.Invest. Radiol.201550423924510.1097/RLI.000000000000011625501017
    [Google Scholar]
  24. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  25. MiottoR. LiL. KiddB.A. DudleyJ.T. Deep patient: An unsupervised representation to predict the future of patients from the electronic health records.Sci. Rep.2016612609410.1038/srep2609427185194
    [Google Scholar]
  26. ChlorogiannisD.D. VerrasG.I. TzelepiV. ChlorogiannisA. ApostolosA. KotisK. AnagnostopoulosC.N. AntzoulasA. VailasM. SchizasD. MulitaF. MulitaF. Tissue classification and diagnosis of colorectal cancer histopathology images using deep learning algorithms. Is the time ripe for clinical practice implementation?Prz. Gastroenterol.202318435336710.5114/pg.2023.13033738572457
    [Google Scholar]
  27. DavriA. BirbasE. KanavosT. NtritsosG. GiannakeasN. TzallasA.T. BatistatouA. Deep learning on histopathological images for colorectal cancer diagnosis: A systematic review.Diagnostics (Basel)202212483710.3390/diagnostics1204083735453885
    [Google Scholar]
  28. BibaultJ.E. GiraudP. HoussetM. DurduxC. TaiebJ. BergerA. CoriatR. ChaussadeS. DoussetB. NordlingerB. BurgunA. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer.Sci. Rep.2018811261110.1038/s41598‑018‑30657‑630135549
    [Google Scholar]
  29. JangB.S. LimY.J. SongC. JeonS.H. LeeK.W. KangS.B. LeeY.J. KimJ.S. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging.Radiother. Oncol.202116118319010.1016/j.radonc.2021.06.01934139211
    [Google Scholar]
  30. ShiL. ZhangY. NieK. SunX. NiuT. YueN. KwongT. ChangP. ChowD. ChenJ.H. SuM.Y. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.Magn. Reson. Imaging201961334010.1016/j.mri.2019.05.00331059768
    [Google Scholar]
  31. ZhangX.Y. WangL. ZhuH.T. LiZ.W. YeM. LiX.T. ShiY.J. ZhuH.C. SunY.S. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI.Radiology20202961566410.1148/radiol.202019093632315264
    [Google Scholar]
  32. Habr-GamaA. PerezR.O. WynnG. MarksJ. KesslerH. Gama-RodriguesJ. Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: Characterization of clinical and endoscopic findings for standardization.Dis. Colon Rectum201053121692169810.1007/DCR.0b013e3181f42b8921178866
    [Google Scholar]
  33. DworakO. KeilholzL. HoffmannA. Pathological features of rectal cancer after preoperative radiochemotherapy.Int. J. Colorectal Dis.1997121192310.1007/s0038400500729112145
    [Google Scholar]
  34. BattersbyN.J. HowP. MoranB. StelznerS. WestN.P. BranaganG. StrassburgJ. QuirkeP. TekkisP. PedersenB.G. GudgeonM. HealdB. BrownG. Prospective validation of a low rectal cancer magnetic resonance imaging staging system and development of a local recurrence risk stratification model.Ann. Surg.2016263475176010.1097/SLA.000000000000119325822672
    [Google Scholar]
  35. BrownG. DaviesS. WilliamsG.T. BourneM.W. NewcombeR.G. RadcliffeA.G. BlethynJ. DallimoreN.S. ReesB.I. PhillipsC.J. MaughanT.S. Effectiveness of preoperative staging in rectal cancer: Digital rectal examination, endoluminal ultrasound or magnetic resonance imaging?Br. J. Cancer2004911232910.1038/sj.bjc.660187115188013
    [Google Scholar]
  36. Curvo-SemedoL. LambregtsD.M.J. MaasM. ThywissenT. MehsenR.T. LammeringG. BeetsG.L. Caseiro-AlvesF. Beets-TanR.G.H. Rectal cancer: Assessment of complete response to preoperative combined radiation therapy with chemotherapy--conventional MR volumetry versus diffusion-weighted MR imaging.Radiology2011260373474310.1148/radiol.1110246721673229
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056309748240509072222
Loading
/content/journals/cmir/10.2174/0115734056309748240509072222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test