Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Idiopathic Sudden Sensorineural Hearing Loss (ISSNHL) is related to alterations in brain cortical and subcortical structures, and changes in brain functional activities involving multiple networks, which is often accompanied by tinnitus. There have been many in-depth research studies conducted concerning ISSNHL. Despite this, the neurophysiological mechanisms of ISSNHL with tinnitus are still under exploration.

Objective

The study aimed to investigate the neural mechanism in ISSNHL patients with tinnitus based on the alterations in intra- and inter-network Functional Connectivity (FC) of multiple networks.

Methods

Thirty ISSNHL subjects and 37 healthy subjects underwent resting-state functional Magnetic Resonance Imaging (rs-fMRI). Independent Component Analysis (ICA) was used to identify 8 Resting-state Networks (RSNs). Furthermore, the study used a two-sample t-test to calculate the intra-network FC differences, while calculating Functional Network Connectivity (FNC) to detect the inter-network FC differences.

Results

By using the ICA approach, tinnitus patients with ISSNHL were found to have FC changes in the following RSNs: CN, VN, DMN, ECN, SMN, and AUN. In addition, the interconnections of VN-SMN, VN-ECN, and ECN-DAN were weakened.

Conclusion

The present study has demonstrated changes in FC within and between networks in ISSNHL with tinnitus, providing ideas for further study on the neuropathological mechanism of the disease.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056308400240517114616
2024-01-01
2025-07-12
The full text of this item is not currently available.

References

  1. StachlerR.J. ChandrasekharS.S. ArcherS.M. RosenfeldR.M. SchwartzS.R. BarrsD.M. BrownS.R. FifeT.D. FordP. GaniatsT.G. HollingsworthD.B. LewandowskiC.A. MontanoJ.J. SaundersJ.E. TucciD.L. ValenteM. WarrenB.E. YaremchukK.L. RobertsonP.J. American Academy of Otolaryngology-Head and Neck Surgery Clinical practice guideline: Sudden hearing loss.Otolaryngol. Head Neck Surg.20121463Suppl.S1S3522383545
    [Google Scholar]
  2. XieW. DaiQ. LiuJ. LiuY. HellströmS. DuanM. Analysis of clinical and laboratory findings of idiopathic sudden sensorineural hearing loss.Sci. Rep.2020101605710.1038/s41598‑020‑63046‑z32269282
    [Google Scholar]
  3. ChauJ.K. LinJ.R.J. AtashbandS. IrvineR.A. WesterbergB.D. Systematic review of the evidence for the etiology of adult sudden sensorineural hearing loss.Laryngoscope201012051011102110.1002/lary.2087320422698
    [Google Scholar]
  4. LinR.J. KrallR. WesterbergB.D. ChadhaN.K. ChauJ.K. Systematic review and meta-analysis of the risk factors for sudden sensorineural hearing loss in adults.Laryngoscope2012122362463510.1002/lary.2248022252719
    [Google Scholar]
  5. KoçA. SanisoğluO. Sudden sensorineural hearing loss: Literature survey on recent studies.J. Otolaryngol.200332530831310.2310/7070.2003.1128814974861
    [Google Scholar]
  6. R.Y.C. Successful treatment of sudden sensorineural hearing loss assures improvement of accompanying tinnitus.Laryngoscope2015125614331437
    [Google Scholar]
  7. CaiY. LiJ. ChenY. ChenW. DangC. ZhaoF. LiW. ChenG. ChenS. LiangM. ZhengY. Inhibition of brain area and functional connectivity in idiopathic sudden sensorineural hearing loss with tinnitus, based on resting-state EEG.Front. Neurosci.20191385110.3389/fnins.2019.0085131474821
    [Google Scholar]
  8. LiangB. LiX. The efficacy of intratympanic or combined steroids as the salvage treatment for moderate-to-severe to profound sudden sensorineural hearing loss.J Clin Otolaryngol Head Neck Surg202034536540
    [Google Scholar]
  9. ShengG.B. SuH. LiH.L. BaoR. LiuG. KongY. TangY. Effect of electro-nape-acupuncture on hearing in patients with refractory flat descending idiopathic sudden sensorineural hearing loss.Zhongguo Zhenjiu202040772673032648396
    [Google Scholar]
  10. WangH.H. ChenY.T. ChouS.F. LeeL.C. WangJ.H. LaiY.H. ChangH.T. Effect of the timing of hyperbaric oxygen therapy on the prognosis of patients with idiopathic sudden sensorineural hearing loss.Biomedicines20231110267010.3390/biomedicines1110267037893044
    [Google Scholar]
  11. Perez Ferreira NetoA. da Costa MonsantoR. Dore Saint JeanL. Sonzzini Ribeiro de SouzaL. de Oliveira PenidoN. Clinical profile of patients with unilateral sudden sensorineural hearing loss: Correlation with hearing prognosis.Otolaryngol. Head Neck Surg.2021165456357010.1177/019459982098657133557702
    [Google Scholar]
  12. XiongW. DaiQ. WangY. HouZ. LuK. SunX. DuanF. WangH. ZhangD. WangM. Idiopathic sudden sensorineural hearing loss in different ages: Prognosis of patients with initial total hearing loss.Front. Psychol.20221381896710.3389/fpsyg.2022.81896735401359
    [Google Scholar]
  13. BiswalB. Zerrin YetkinF. HaughtonV.M. HydeJ.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri.Magn. Reson. Med.199534453754110.1002/mrm.19103404098524021
    [Google Scholar]
  14. GeerligsL. RenkenR.J. SaliasiE. MauritsN.M. LoristM.M. A brain-wide study of age-related changes in functional connectivity.Cerebral cortex New York, N.Y2015251987199910.1093/cercor/bhu012
    [Google Scholar]
  15. ChenY.C. WangF. WangJ. BoF. XiaW. GuJ.P. YinX. Resting-state brain abnormalities in chronic subjective tinnitus: A meta-analysis.Front. Hum. Neurosci.2017112210.3389/fnhum.2017.0002228174532
    [Google Scholar]
  16. LiW. MaX. WangQ. HeX. QuX. ZhangL. ChenL. LiuZ. Intrinsic network changes in bilateral tinnitus patients with cognitive impairment: A resting-state functional mri study.Brain Sci.2022128104910.3390/brainsci1208104936009112
    [Google Scholar]
  17. BingD. YingJ. MiaoJ. LanL. WangD. ZhaoL. YinZ. YuL. GuanJ. WangQ. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models.Clin Otolaryngol 20184386887410.1111/coa.13068
    [Google Scholar]
  18. DispenzaF. AmodioE. De StefanoA. GallinaS. MarcheseD. MathurN. RiggioF. Treatment of sudden sensorineural hearing loss with transtympanic injection of steroids as single therapy: A randomized clinical study. European archives of oto-rhino-laryngology: Official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): Affiliated with the German Society for Oto-Rhino-Laryngology -.Head Neck Surg.201126812731278
    [Google Scholar]
  19. TeismannH. OkamotoH. PantevC. Short and intense tailor-made notched music training against tinnitus: the tinnitus frequency matters.PLoS One201169e2468510.1371/journal.pone.002468521935438
    [Google Scholar]
  20. AllenE.A. DamarajuE. PlisS.M. ErhardtE.B. EicheleT. CalhounV.D. Tracking whole-brain connectivity dynamics in the resting state.Cerebral cortex New York, N.Y.20142466367610.1093/cercor/bhs352
    [Google Scholar]
  21. ShirerW.R. RyaliS. RykhlevskaiaE. MenonV. GreiciusM.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns.Cerebral cortex New York, N.Y.20122215816210.1093/cercor/bhr099
    [Google Scholar]
  22. KonoikeN. KotozakiY. MiyachiS. MiyauchiC.M. YomogidaY. AkimotoY. KuraokaK. SugiuraM. KawashimaR. NakamuraK. Rhythm information represented in the fronto-parieto-cerebellar motor system.Neuroimage201263132833810.1016/j.neuroimage.2012.07.00222796994
    [Google Scholar]
  23. StoodleyC.J. ValeraE.M. SchmahmannJ.D. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study.Neuroimage20125921560157010.1016/j.neuroimage.2011.08.06521907811
    [Google Scholar]
  24. BaumannO. BorraR.J. BowerJ.M. CullenK.E. HabasC. IvryR.B. LeggioM. MattingleyJ.B. MolinariM. MoultonE.A. PaulinM.G. PavlovaM.A. SchmahmannJ.D. SokolovA.A. Consensus paper: The role of the cerebellum in perceptual processes.Cerebellum201514219722010.1007/s12311‑014‑0627‑725479821
    [Google Scholar]
  25. XuX.M. JiaoY. TangT.Y. ZhangJ. LuC.Q. LuanY. Dissociation between cerebellar and cerebral neural activities in humans with long-term bilateral sensorineural hearing loss.Neural Plast. 201920198354849
    [Google Scholar]
  26. StoodleyC. SchmahmannJ. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies.Neuroimage200944248950110.1016/j.neuroimage.2008.08.03918835452
    [Google Scholar]
  27. ChenY.C. XiaW. LuoB. MuthaiahV.P.K. XiongZ. ZhangJ. WangJ. SalviR. TengG.J. Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus.Front. Neural Circuits201596710.3389/fncir.2015.0006726578894
    [Google Scholar]
  28. ZenkeJ.K. RahmanS. GuoQ. LeungA.W.S. GomaaN.A. Central processing in tinnitus: fMRI study outlining patterns of activation using an auditory discrimination task in normal versus tinnitus patients.Otol. Neurotol.2021428e1170e1180[and].10.1097/MAO.0000000000003194
    [Google Scholar]
  29. ZhangY. MaoZ. FengS. LiuX. LanL. ZhangJ. YuX. Altered functional networks in long-term unilateral hearing loss: A connectome analysis.Brain Behav.20188e00912
    [Google Scholar]
  30. ZhaoZ. WuJ. FanM. YinD. TangC. GongJ. XuG. GaoX. YuQ. YangH. SunL. JiaJ. Altered intra and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke.Hum. Brain Mapp.20183983388339710.1002/hbm.2418329691945
    [Google Scholar]
  31. RaichleM.E. MacLeodA.M. SnyderA.Z. PowersW.J. GusnardD.A. ShulmanG.L. A default mode of brain function.Proc. Natl. Acad. Sci. USA200198267668210.1073/pnas.98.2.67611209064
    [Google Scholar]
  32. ChenQ. LvH. WangZ. WeiX. ZhaoP. YangZ. GongS. WangZ. Brain structural and functional reorganization in tinnitus patients without hearing loss after sound therapy: A preliminary longitudinal study.Front. Neurosci.20211557385810.3389/fnins.2021.57385833776630
    [Google Scholar]
  33. XingC. ZhangJ. CuiJ. YongW. HuJ. YinX. WuY. ChenY.C. Disrupted functional network connectivity predicts cognitive impairment in presbycusis patients.Front. Aging Neurosci.20201224610.3389/fnagi.2020.0024632903748
    [Google Scholar]
  34. ZhouG.P. ShiX.Y. WeiH.L. QuL.J. YuY.S. ZhouQ.Q. YinX. ZhangH. TaoY.J. Disrupted intraregional brain activity and functional connectivity in unilateral acute tinnitus patients with hearing loss.Front. Neurosci.201913101010.3389/fnins.2019.0101031607851
    [Google Scholar]
  35. McHughM.J. GuH. YangY. AdinoffB. SteinE.A. Executive control network connectivity strength protects against relapse to cocaine use.Addict. Biol.20172261790180110.1111/adb.1244827600492
    [Google Scholar]
  36. RosemannS. ThielC.M. The effect of age-related hearing loss and listening effort on resting state connectivity.Sci. Rep.201991233710.1038/s41598‑019‑38816‑z30787339
    [Google Scholar]
  37. ZhangJ. SuJ. WangM. ZhaoY. ZhangQ.T. YaoQ. LuH. ZhangH. LiG.F. WuY.L. LiuY.S. LiuF.D. ZhuangM.T. ShiY.H. HouT.Y. ZhaoR. QiaoY. LiJ. LiuJ.R. DuX. The sensorimotor network dysfunction in migraineurs without aura: A resting-state fMRI study.J. Neurol.2017264465466310.1007/s00415‑017‑8404‑428154971
    [Google Scholar]
  38. BrennanK.C. PietrobonD. A systems neuroscience approach to migraine.Neuron20189751004102110.1016/j.neuron.2018.01.02929518355
    [Google Scholar]
  39. PanouillèresM.T.N. MöttönenR. Decline of auditory-motor speech processing in older adults with hearing loss.Neurobiol. Aging201872899710.1016/j.neurobiolaging.2018.07.01330240945
    [Google Scholar]
  40. JobA. PonsY. LamalleL. JaillardA. BuckK. SegebarthC. Delon-MartinC. Abnormal cortical sensorimotor activity during “Target” sound detection in subjects with acute acoustic trauma sequelae: An fMRI study.Brain Behav.20122218719910.1002/brb3.2122574285
    [Google Scholar]
  41. YuM. SongY. LiuJ. The posterior middle temporal gyrus serves as a hub in syntactic comprehension: A model on the syntactic neural network.Brain Lang.202223210516210.1016/j.bandl.2022.10516235908340
    [Google Scholar]
  42. SugimotoH. AbeM.S. Otake-MatsuuraM. Word-producing brain: Contribution of the left anterior middle temporal gyrus to word production patterns in spoken language.Brain Lang.202323810523310.1016/j.bandl.2023.10523336842390
    [Google Scholar]
  43. FanW. ZhangW. LiJ. ZhaoX. MellaG. LeiP. LiuY. WangH. ChengH. ShiH. XuH. Altered contralateral auditory cortical morphology in unilateral sudden sensorineural hearing loss.Otol. Neurotol.2015361016221627[and].10.1097/MAO.0000000000000892
    [Google Scholar]
  44. MicarelliA. ChiaravallotiA. VizianoA. DanieliR. SchillaciO. AlessandriniM. Early cortical metabolic rearrangement related to clinical data in idiopathic sudden sensorineural hearing loss.Hear. Res.2017350919910.1016/j.heares.2017.04.01128460253
    [Google Scholar]
  45. van der LooE. GaisS. CongedoM. VannesteS. PlazierM. MenovskyT. Van de HeyningP. De RidderD. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.PLoS One2009410e739610.1371/journal.pone.000739619816597
    [Google Scholar]
  46. BragaR.M. FuR.Z. SeemungalB.M. WiseR.J.S. LeechR. Eye movements during auditory attention predict individual differences in dorsal attention network activity.Front. Hum. Neurosci.20161016410.3389/fnhum.2016.0016427242465
    [Google Scholar]
  47. BurtonH. WinelandA. BhattacharyaM. NicklausJ. GarciaK.S. PiccirilloJ.F. Altered networks in bothersome tinnitus: A functional connectivity study.BMC Neurosci.2012131310.1186/1471‑2202‑13‑322217183
    [Google Scholar]
  48. BucknerR.L. Andrews-HannaJ.R. SchacterD.L. The brain’s default network: Anatomy, function, and relevance to disease.Ann. N. Y. Acad. Sci.20081124113810.1196/annals.1440.01118400922
    [Google Scholar]
  49. SuoX. DingH. LiX. ZhangY. LiangM. ZhangY. YuC. QinW. Anatomical and functional coupling between the dorsal and ventral attention networks.Neuroimage202123211786810.1016/j.neuroimage.2021.11786833647500
    [Google Scholar]
  50. FoxM.D. CorbettaM. SnyderA.Z. VincentJ.L. RaichleM.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.Proc. Natl. Acad. Sci. USA200610326100461005110.1073/pnas.060418710316788060
    [Google Scholar]
  51. SchmidtS.A. Carpenter-ThompsonJ. HusainF.T. Connectivity of precuneus to the default mode and dorsal attention networks: A possible invariant marker of long-term tinnitus.Neuroimage Clin.20171619620410.1016/j.nicl.2017.07.01528794980
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056308400240517114616
Loading
/content/journals/cmir/10.2174/0115734056308400240517114616
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): FC; FNC; ICA; ISSNHL; RSNs; Tinnitus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test