Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study aims to optimize the downgrading of BI-RADS class 4a nodules by combining various sectional elastography techniques with age.

Materials and Methods

We performed conventional ultrasonography, strain elastography (SE), and shear wave elastography (SWE) on patients. Quantitative parameters recorded included age, cross-sectional and longitudinal area ratios (C-EI/B, L-EI/B), strain rate ratios (C-SR, L-SR), overall average elastic modulus values (C-Emean1, L-Emean1), five-point average elastic modulus values (C-Emean2, L-Emean2), and maximum elastic modulus values (C-Emax, L-Emax).

Results

Histopathological evaluations showed that out of 230 lesions, 45 were malignant, and 185 were benign. The sensitivity and specificity of conventional ultrasonography were 100% and 0%, respectively. In contrast, SE and SWE exhibited higher specificity but lower sensitivity. Cross-sectional parameters (C-EI/B, C-SR, C-Emean1, C-Emean2, and C-Emax) outperformed their longitudinal counterparts, with C-SR and C-Emax showing the highest specificity (72.43% and 73.51%) and satisfactory sensitivity (80.00% and 88.89%). Combining age with C-SR and C-Emax significantly improved diagnostic efficiency, achieving a sensitivity of 97.78% and a specificity of 77.30%.

Conclusion

Integrating age with C-SR and C-Emax effectively reduces unnecessary biopsies for most BI-RADS 4a benign lesions while maintaining a very low misdiagnosis rate.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056307595240911075111
2024-01-01
2025-04-12
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MubarikS. Shakil MalikS. WangZ. LiC. FawadM. YuC. Recent insights into breast cancer incidence trends among four Asian countries using age-period-cohort model.Cancer Manag. Res.2019118145815510.2147/CMAR.S20832331564974
    [Google Scholar]
  3. ShangJ. RuanL.T. WangY.Y. ZhangX.J. DangY. LiuB. WangW.L. SongY. ChangS.J. Utilizing size-based thresholds of stiffness gradient to reclassify BI-RADS category 3–4b lesions increases diagnostic performance.Clin. Radiol.201974430631310.1016/j.crad.2019.01.00430755314
    [Google Scholar]
  4. MagnyS.J. ShikhmanR. KeppkeA.L. Breast imaging reporting and data system.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  5. RenT. LiX. XiangY. ZhangY. JiangM. ZhangC. The diagnostic significance of the BI-RADS classification combined with automated breast volume scanner and shear wave elastography for breast lesions.J. Ultrasound Med.20234271459146910.1002/jum.1615436534583
    [Google Scholar]
  6. ZhengX. HuangY. WangY. LiuY. LiF. HanJ. WangJ. CaoL. ZhouJ. Combination of different types of elastography in downgrading ultrasound Breast Imaging-Reporting and Data System category 4a breast lesions.Breast Cancer Res. Treat.2019174242343210.1007/s10549‑018‑05072‑030515679
    [Google Scholar]
  7. LengX. JapaerR. ZhangH. YeerlanM. MaF. DingJ. Relationship of shear wave elastography anisotropy with tumor stem cells and epithelial-mesenchymal transition in breast cancer.BMC Med. Imaging202121117110.1186/s12880‑021‑00707‑z34789199
    [Google Scholar]
  8. ZhouJ. YangZ. ZhanW. DongY. ZhouC. Anisotropic properties of breast tissue measured by acoustic radiation force impulse quantification.Ultrasound Med. Biol.201642102372238210.1016/j.ultrasmedbio.2016.06.01227471118
    [Google Scholar]
  9. WangM. YangZ. LiuC. YanJ. ZhangW. SunJ. CuiG. Differential diagnosis of breast category 3 and 4 nodules through BI-RADS classification in conjunction with shear wave elastography.Ultrasound Med. Biol.201743360160610.1016/j.ultrasmedbio.2016.10.00427988221
    [Google Scholar]
  10. DeLongE.R. DeLongD.M. Clarke-PearsonD.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach.Biometrics198844383784510.2307/25315953203132
    [Google Scholar]
  11. BergW.A. Can optoacoustic imaging safely reduce benign breast biopsies?Radiology2018287241341510.1148/radiol.201818012129668408
    [Google Scholar]
  12. ZhiW. MiaoA. YouC. ZhouJ. ZhangH. ZhuX. WangY. ChangC. Differential diagnosis of B-mode ultrasound Breast Imaging Reporting and Data System category 3–4a lesions in conjunction with shear-wave elastography using conservative and aggressive approaches.Quant. Imaging Med. Surg.20221273833384310.21037/qims‑21‑91635782244
    [Google Scholar]
  13. ChenY. LuJ. LiJ. LiaoJ. HuangX. ZhangB. Evaluation of diagnostic efficacy of multimode ultrasound in BI-RADS 4 breast neoplasms and establishment of a predictive model.Front. Oncol.202212105328010.3389/fonc.2022.105328036505867
    [Google Scholar]
  14. HeP. ChenW. CuiL.G. ZhangH. Can short-term follow-up with ultrasound be offered as an acceptable alternative to immediate biopsy or surgery for patients with first ultrasound diagnosis of BI-RADS 4A lesions?World J. Surg.20234792161216810.1007/s00268‑023‑07037‑x37115232
    [Google Scholar]
  15. XueS.S. ZhaoQ.L. RuanL.T. WangF.Q. ZhouC. ShengW. Comparative analysis of the quantitative parameter method and elasticity color mode method for real-time shear wave elastography in the diagnosis of benign and malignant solid breast lesions.Tumori2022108657858510.1177/0300891621104823934651522
    [Google Scholar]
  16. AksoyD.Ö. YildizS. AtasoyB. AlkanA. KandemirliS.G. CingözM. Effect of quantitative and semi-quantitative elastography methods for the management of borderline lesions on ultrasonography.Curr. Med. Imaging Rev.202117676777410.2174/157340561666620123110260633390121
    [Google Scholar]
  17. TangL. WangY. ChenP. ChenM. JiangL. Clinical use and adjustment of ultrasound elastography for breast lesions followed WFUMB guidelines and recommendations in the real world.Front. Oncol.202212102291710.3389/fonc.2022.102291736505783
    [Google Scholar]
  18. HanJ. LiF. PengC. HuangY. LinQ. LiuY. CaoL. ZhouJ. Reducing unnecessary biopsy of breast lesions: Preliminary results with combination of strain and shear-wave elastography.Ultrasound Med. Biol.20194592317232710.1016/j.ultrasmedbio.2019.05.01431221510
    [Google Scholar]
  19. LeeS.H. ChoN. ChangJ.M. KooH.R. KimJ.Y. KimW.H. BaeM.S. YiA. MoonW.K. Two-view versus single-view shear-wave elastography: Comparison of observer performance in differentiating benign from malignant breast masses.Radiology2014270234435310.1148/radiol.1313056124029644
    [Google Scholar]
  20. ChenY. GaoY. ChangC. WangF. ZengW. ChenJ. Ultrasound shear wave elastography of breast lesions: Correlation of anisotropy with clinical and histopathological findings.Cancer Imaging20181811110.1186/s40644‑018‑0144‑x29622044
    [Google Scholar]
  21. SkerlK. VinnicombeS. ThomsonK. McLeanD. GiannottiE. EvansA. Anisotropy of solid breast lesions in 2D shear wave elastography is an indicator of malignancy.Acad. Radiol.2016231536110.1016/j.acra.2015.09.01626564483
    [Google Scholar]
  22. MendelsonE.B. Böhm-VélezM. ACR BI-RADS® ultrasound.ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System.United StatesAmerican College of Radiology2013
    [Google Scholar]
  23. FleuryE.F. The importance of breast elastography added to the BI-RADS® (5th edition) lexicon classification.Rev. Assoc. Med. Bras.19926143136
    [Google Scholar]
  24. CongR. LiJ. WangX. Comparing Performance of combinations of shear wave elastography and B-Mode Ultrasound in diagnosing breast masses: Is it influenced by mass size?Ultrasound Med. Biol.201743102133214310.1016/j.ultrasmedbio.2017.04.01528673478
    [Google Scholar]
  25. Chamming’sF. Latorre-OssaH. Le Frère-BeldaM.A. FitoussiV. QuibelT. AssayagF. MarangoniE. AutretG. BalvayD. PidialL. GennissonJ.L. TanterM. CuenodC.A. ClémentO. FournierL.S. Shear wave elastography of tumour growth in a human breast cancer model with pathological correlation.Eur. Radiol.20132382079208610.1007/s00330‑013‑2828‑823553589
    [Google Scholar]
  26. LeeS.H. ChungJ. ChoiH.Y. ChoiS.H. RyuE.B. KoK.H. KooH.R. ParkJ.S. YiA. YoukJ.H. SonE.J. ChuA.J. ChangJ.M. ChoN. JangM. KookS.H. ChaE.S. MoonW.K. Evaluation of screening us–detected breast masses by combined use of elastography and color doppler us with b-mode us in women with dense breasts: A multicenter prospective study.Radiology2017285266066910.1148/radiol.201716242428640693
    [Google Scholar]
  27. HuY. YangY. GuR. JinL. ShenS. LiuF. WangH. MeiJ. JiangX. LiuQ. SuF. Does patient age affect the PPV3 of ACR BI-RADS Ultrasound categories 4 and 5 in the diagnostic setting?Eur. Radiol.20182862492249810.1007/s00330‑017‑5203‑329302783
    [Google Scholar]
  28. BarrR.G. NakashimaK. AmyD. CosgroveD. FarrokhA. SchaferF. BamberJ.C. CasteraL. ChoiB.I. ChouY.H. DietrichC.F. DingH. FerraioliG. FiliceC. Friedrich-RustM. HallT.J. NightingaleK.R. PalmeriM.L. ShiinaT. SuzukiS. SporeaI. WilsonS. KudoM. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: Breast.Ultrasound Med. Biol.20154151148116010.1016/j.ultrasmedbio.2015.03.00825795620
    [Google Scholar]
  29. NiuZ. TianJ.W. RanH.T. RenW.D. ChangC. YuanJ.J. KangC.S. DengY.B. WangH. LuoB.M. GuoS.L. ZhouQ. XueE.S. ZhanW.W. ZhouQ. LiJ. ZhouP. ZhangC.Q. ChenM. GuY. XuJ.F. ChenW. ZhangY.H. WangH.Q. LiJ.C. WangH.Y. JiangY.X. Risk-predicted dual nomograms consisting of clinical and ultrasound factors for downgrading BI-RADS category 4a breast lesions - A multiple centre study.J. Cancer202112129230410.7150/jca.5130233391426
    [Google Scholar]
  30. Prieto-FernándezL. MenéndezS.T. Otero-RosalesM. Montoro-JiménezI. Hermida-PradoF. García-PedreroJ.M. Álvarez-TeijeiroS. Pathobiological functions and clinical implications of annexin dysregulation in human cancers.Front. Cell Dev. Biol.202210100990810.3389/fcell.2022.100990836247003
    [Google Scholar]
  31. CarlsenJ.F. EwertsenC. SlettingS. TalmanM.L. VejborgI. Bachmann NielsenM. Strain histograms are equal to strain ratios in predicting malignancy in breast tumours.PLoS One20171210e018623010.1371/journal.pone.018623029073170
    [Google Scholar]
  32. BulumA. IvanacG. DivjakE. Biondić ŠpoljarI. Džoić DominkovićM. BojanićK. LucijanićM. BrkljačićB. Elastic modulus and elasticity ratio of malignant breast lesions with shear wave ultrasound elastography: Variations with different region of interest and lesion size.Diagnostics (Basel)2021116101510.3390/diagnostics1106101534206101
    [Google Scholar]
  33. XuR. YinP. WeiJ. DingQ. The role of matrix stiffness in breast cancer progression: A review.Front. Oncol.202313128492610.3389/fonc.2023.128492637916166
    [Google Scholar]
  34. YangH. XuY. ZhaoY. YinJ. ChenZ. HuangP. The role of tissue elasticity in the differential diagnosis of benign and malignant breast lesions using shear wave elastography.BMC Cancer202020193010.1186/s12885‑020‑07423‑x32993571
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056307595240911075111
Loading
/content/journals/cmir/10.2174/0115734056307595240911075111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test