Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Objective

This study aimed to predict liver injury in AP patients by establishing a radiomics model based on CECT.

Methods

A total of 1223 radiomic features were extracted from late arterial-phase pancreatic CECT images of 209 AP patients (146 in the training cohort and 63 in the test cohort), and the optimal radiomic features retained after dimensionality reduction by LASSO were used to construct a radiomic model through logistic regression analysis. In addition, clinical features were collected to develop a clinical model, and a joint model was established by combining the best radiomic features and clinical features to evaluate the practicality and application value of the radiomic models, clinical model, and combined model.

Results

Four potential features were selected from the pancreatic parenchyma to construct the radiomic model, and the AUC of the radiomic model was significantly greater than that of the clinical model for both the training cohort (0.993 . 0.653, p = 0.000) and test cohort (0.910 . 0.574, p = 0.000). The joint model had a greater AUC than the radiomics model for both the training cohort (0.997 . 0.993, p = 0.357) and the test cohort (0.925 . 0.910, p = 0.302).

Conclusion

The radiomic model based on CECT has good performance in predicting liver injury in AP patients and can guide clinical decision-making and improve the prognosis of patients with AP.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056307393240623140851
2024-01-01
2025-06-01
The full text of this item is not currently available.

References

  1. LankischP.G. ApteM. BanksP.A. Acute pancreatitis.Lancet20153869988859610.1016/S0140‑6736(14)60649‑825616312
    [Google Scholar]
  2. SalujaA. DudejaV. DawraR. SahR.P. Early intra-acinar events in pathogenesis of pancreatitis.Gastroenterology201915671979199310.1053/j.gastro.2019.01.26830776339
    [Google Scholar]
  3. SchepersN.J. BakkerO.J. BesselinkM.G. Ahmed AliU. BollenT.L. GooszenH.G. van SantvoortH.C. BrunoM.J. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis.Gut20196861044105110.1136/gutjnl‑2017‑31465729950344
    [Google Scholar]
  4. van DijkS.M. HallenslebenN.D.L. van SantvoortH.C. FockensP. van GoorH. BrunoM.J. BesselinkM.G. Acute pancreatitis: Recent advances through randomised trials.Gut201766112024203210.1136/gutjnl‑2016‑31359528838972
    [Google Scholar]
  5. WangX. ZhaoX. ShiC. BörjessonA. ChenZ. AxelssonJ. ZhaoH. AnderssonR. Potential mechanisms and significance of acute pancreatitis-associated liver injury.Scand. J. Gastroenterol.200641560461310.1080/0036552050034710516638705
    [Google Scholar]
  6. ManraiM. KochharR. GuptaV. YadavT.D. DhakaN. KalraN. SinhaS.K. KhandelwalN. Outcome of acute pancreatic and peripancreatic collections occurring in patients with acute pancreatitis.Ann. Surg.2018267235736310.1097/SLA.000000000000206527805963
    [Google Scholar]
  7. Folch-PuyE. Importance of the liver in systemic complications associated with acute pancreatitis: The role of Kupffer cells.J. Pathol.2007211438338810.1002/path.212317212343
    [Google Scholar]
  8. KyösolaK. FockG. Complications in acute pancreatitis.Ann. Chir. Gynaecol.19766517121032880
    [Google Scholar]
  9. WangY. LiuW. LiuX. ShengM. PeiY. LeiR. ZhangS. TaoR. Role of liver in modulating the release of inflammatory cytokines involved in lung and multiple organ dysfunction in severe acute pancreatitis.Cell Biochem. Biophys.201571276577610.1007/s12013‑014‑0261‑525260395
    [Google Scholar]
  10. AritaT. MatsunagaN. TakanoK. HaraA. FujitaT. HonjoK. Hepatic perfusion abnormalities in acute pancreatitis: CT appearance and clinical importance.Abdom. Imaging199924215716210.1007/s00261990046610024402
    [Google Scholar]
  11. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  12. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  13. ZhouT. XieC. ChenY. DengY. WuJ. LiangR. YangG. ZhangX. Magnetic resonance imaging–based radiomics models to predict early extrapancreatic necrosis in acute pancreatitis.Pancreas202150101368137510.1097/MPA.000000000000193535041335
    [Google Scholar]
  14. ZhaoY. WeiJ. XiaoB. WangL. JiangX. ZhuY. HeW. Early prediction of acute pancreatitis severity based on changes in pancreatic and peripancreatic computed tomography radiomics nomogram.Quant. Imaging Med. Surg.20231331927193610.21037/qims‑22‑82136915340
    [Google Scholar]
  15. ChenY. ChenT. WuC. LinQ. HuR. XieC. ZuoH. WuJ. MuQ. FuQ. YangG. ZhangX.M. Radiomics model of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis.Eur. Radiol.20192984408441710.1007/s00330‑018‑5824‑130413966
    [Google Scholar]
  16. BanksP.A. BollenT.L. DervenisC. GooszenH.G. JohnsonC.D. SarrM.G. TsiotosG.G. VegeS.S. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus.Gut201362110211110.1136/gutjnl‑2012‑30277923100216
    [Google Scholar]
  17. AlbertiP. PandoE. MataR. VidalL. RosonN. MastR. ArmarioD. MerinoX. DopazoC. BlancoL. CaraltM. GomezC. BalsellsJ. CharcoR. Evaluation of the modified computed tomography severity index (MCTSI) and computed tomography severity index (CTSI) in predicting severity and clinical outcomes in acute pancreatitis.J. Dig. Dis.2021221414810.1111/1751‑2980.1296133184988
    [Google Scholar]
  18. GaoW. YangH-X. MaC-E. MaC-E. The value of BISAP score for predicting mortality and severity in acute pancreatitis: A systematic review and meta-analysis.PLoS One2015106e013041210.1371/journal.pone.0130412
    [Google Scholar]
  19. Simoes Predicting acute pancreatitis severity: Comparison of prognostic scores.Gastroenterol. Res.20114521622210.4021/gr364w
    [Google Scholar]
  20. Shafiq-ul-HassanM. ZhangG.G. LatifiK. UllahG. HuntD.C. BalagurunathanY. AbdalahM.A. SchabathM.B. GoldgofD.G. MackinD. CourtL.E. GilliesR.J. MorosE.G. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels.Med. Phys.20174431050106210.1002/mp.1212328112418
    [Google Scholar]
  21. PapachristouG.I. MuddanaV. YadavD. O’ConnellM. SandersM.K. SlivkaA. WhitcombD.C. Comparison of BISAP, Ranson’s, APACHE-II, and CTSI scores in predicting organ failure, complications, and mortality in acute pancreatitis.Am. J. Gastroenterol.2010105243544110.1038/ajg.2009.62219861954
    [Google Scholar]
  22. SinghV.K. WuB.U. BollenT.L. RepasK. MaurerR. MorteleK.J. BanksP.A. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis.Clin. Gastroenterol. Hepatol.20097111247125110.1016/j.cgh.2009.08.01219686869
    [Google Scholar]
  23. BalthazarE.J. Acute pancreatitis: Assessment of severity with clinical and CT evaluation.Radiology2002223360361310.1148/radiol.223301068012034923
    [Google Scholar]
  24. BalthazarE.J. RobinsonD.L. MegibowA.J. RansonJ.H. Acute pancreatitis: Value of CT in establishing prognosis.Radiology1990174233133610.1148/radiology.174.2.22966412296641
    [Google Scholar]
  25. BandayI.A. GattooI. KhanA.M. JaveedJ. GuptaG. LatiefM. Modified computed tomography severity index for evaluation of acute pancreatitis and its correlation with clinical outcome: A tertiary care hospital based observational study.J. Clin. Diagn. Res.201598TC01TC0510.7860/JCDR/2015/14824.636826436014
    [Google Scholar]
  26. FuH. ShenZ. LaiR. ZhouT. HuangY. ZhaoS. MoR. CaiM. JiangS. WangJ. DuB. QianC. ChenY. YanF. XiangX. LiR. XieQ. Clinic-radiomics model using liver magnetic resonance imaging helps predict chronicity of drug-induced liver injury.Hepatol. Int.20231761626163610.1007/s12072‑023‑10539‑437188998
    [Google Scholar]
  27. CostaG. CavinatoL. MasciC. FizF. SolliniM. PolitiL.S. ChitiA. BalzariniL. AghemoA. di TommasoL. IevaF. TorzilliG. ViganòL. Virtual biopsy for diagnosis of chemotherapy-associated liver injuries and steatohepatitis: A combined radiomic and clinical model in patients with colorectal liver metastases.Cancers20211312307710.3390/cancers1312307734203103
    [Google Scholar]
  28. RousseyB. CalameP. RevelL. ZverT. KonanA. PitonG. KochS. VuittonL. DelabrousseE. Liver spontaneous hypoattenuation on CT is an imaging biomarker of the severity of acute pancreatitis.Diagn. Interv. Imaging2022103940140710.1016/j.diii.2022.03.00835501284
    [Google Scholar]
  29. KanematsuM. ShiratoriY. HoshiH. KondoH. MatsuoM. MoriwakiH. Pancreas and peripancreatic vessels: Effect of imaging delay on gadolinium enhancement at dynamic gradient-recalled-echo MR imaging.Radiology200021519510210.1148/radiology.215.1.r00ap139510751473
    [Google Scholar]
  30. TibshiraniR. Regression shrinkage and selection via the lasso.J. R. Stat. Soc. Series B Stat. Methodol.199658126728810.1111/j.2517‑6161.1996.tb02080.x
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056307393240623140851
Loading
/content/journals/cmir/10.2174/0115734056307393240623140851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test