Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

Utilizing ultrasound radiomics, we developed a machine learning (ML) model to construct a nomogram for the non-invasive evaluation of glomerular status in diabetic kidney disease (DKD).

Materials and Methods

Patients with DKD who underwent renal biopsy were retrospectively enrolled between February 2017 and February 2023. The patients were classified into mild or moderate-severe glomerular severity based on pathological findings. All patients were randomly divided into a training (n = 79) or testing cohort (n = 35). Radiomics features were extracted from ultrasound images, and a logistic regression ML algorithm was applied to construct an ultrasound radiomic model after selecting the most significant features using univariate analysis and the least absolute shrinkage and selection operator algorithm (LASSO). A clinical model was created following univariate and multivariate logistic regression analyses of the patient's clinical characteristics. Then, the clinical-radiomics model was constructed by combining rad scores and independent clinical characteristics and plotting the nomogram. The receiver operating characteristic curve (ROC) and decision curve analysis (DCA), respectively, were used to evaluate the prediction abilities of the clinical model, ultrasound-radiomics model, and clinical-radiomics model.

Results

A total of 114 DKD patients were included in the study, including 43 with mild glomerulopathy and 71 with moderate-severe glomerulopathy. The area under the curve (AUC) for the clinical model based on clinical features and the radiomic model based on 2D ultrasound images in the testing cohort was 0.729 and 0.761, respectively. Further, the AUC for the clinical-radiomics nomogram was constructed by combining clinical features, and the rad score was 0.850 in the testing cohort. The outcomes were better than those of both the radiomic and clinical single-model approaches.

Conclusion

The nomogram constructed by combining ultrasound radiomics and clinical features has good performance in assessing the glomerular status of patients with DKD and will help clinicians monitor the progression of DKD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056307336240703100022
2024-01-01
2025-06-26
The full text of this item is not currently available.

References

  1. GuilbertJ.J. The World Health report 2006 1 : Working together for health 2.Educ. Health200619338538710.1080/1357628060093791117178522
    [Google Scholar]
  2. ThomasM.C. BrownleeM. SusztakK. SharmaK. Jandeleit-DahmK.A.M. ZoungasS. RossingP. GroopP.H. CooperM.E. Diabetic kidney disease.Nat. Rev. Dis. Primers2015111501810.1038/nrdp.2015.1827188921
    [Google Scholar]
  3. ZimmetP.Z. MaglianoD.J. HermanW.H. ShawJ.E. Diabetes: A 21st century challenge.Lancet Diabetes Endocrinol.201421566410.1016/S2213‑8587(13)70112‑824622669
    [Google Scholar]
  4. GheithO. FaroukN. NampooryN. HalimM.A. Al-OtaibiT. Diabetic kidney disease: World wide difference of prevalence and risk factors.J. Nephropharmacol.201551495628197499
    [Google Scholar]
  5. AndersH.J. HuberT.B. IsermannB. SchifferM. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease.Nat. Rev. Nephrol.201814636137710.1038/s41581‑018‑0001‑y29654297
    [Google Scholar]
  6. SohouliM.H. MirmiranP. SerajS.S. KutbiE. AlkahmousH.A.M. AlmuqayyidF. ArafahO.A. BarakehA.R.R. Abu-ZaidA. Impact of low-protein diet on cardiovascular risk factors and kidney function in diabetic nephropathy: A systematic review and meta-analysis of randomized-controlled trials.Diabetes Res. Clin. Pract.202219111006810.1016/j.diabres.2022.11006836084854
    [Google Scholar]
  7. FiorettoP. MauerM. BroccoE. VelussiM. FrigatoF. MuolloB. SambataroM. AbaterussoC. BaggioB. CrepaldiG. NosadiniR. Patterns of renal injury in NIDDM patients with microalbuminuria.Diabetologia199639121569157610.1007/s0012500506168960844
    [Google Scholar]
  8. GambaraV. MeccaG. RemuzziG. BertaniT. Heterogeneous nature of renal lesions in type II diabetes.J. Am. Soc. Nephrol.1993381458146610.1681/ASN.V3814588490117
    [Google Scholar]
  9. MazzuccoG. BertaniT. FortunatoM. BernardiM. LeutnerM. BoldoriniR. MongaG. Different patterns of renal damage in type 2 diabetes mellitus: A multicentric study on 393 biopsies.Am. J. Kidney Dis.200239471372010.1053/ajkd.2002.3198811920336
    [Google Scholar]
  10. SchwartzM. LewisE.J. Leonard-MartinT. LewisJ.B. BatlleD. The Collaborative Study Group Renal pathology patterns in type II diabetes mellitus: Relationship with retinopathy.Nephrol. Dial. Transplant.199813102547255210.1093/ndt/13.10.25479794557
    [Google Scholar]
  11. TervaertT.W.C. MooyaartA.L. AmannK. CohenA.H. CookH.T. DrachenbergC.B. FerrarioF. FogoA.B. HaasM. de HeerE. JohK. NoëlL.H. RadhakrishnanJ. SeshanS.V. BajemaI.M. BruijnJ.A. Renal Pathology Society Pathologic classification of diabetic nephropathy.J. Am. Soc. Nephrol.201021455656310.1681/ASN.201001001020167701
    [Google Scholar]
  12. MiseK. HoshinoJ. UbaraY. SumidaK. HiramatsuR. HasegawaE. YamanouchiM. HayamiN. SuwabeT. SawaN. FujiiT. OhashiK. HaraS. TakaichiK. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy.Nephrol. Dial. Transplant.201429110911810.1093/ndt/gft34924151019
    [Google Scholar]
  13. LiL. ZhangX. LiZ. ZhangR. GuoR. YinQ. YangL. YueR. SuB. HuangS. XuH. HeC. LiuF. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement.J. Diabetes Complications201731111412110.1016/j.jdiacomp.2016.10.02427838100
    [Google Scholar]
  14. OhS.W. KimS. NaK.Y. ChaeD.W. KimS. JinD.C. ChinH.J. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy.Diabetes Res. Clin. Pract.201297341842410.1016/j.diabres.2012.03.01622521535
    [Google Scholar]
  15. YangY.Z. WangJ.W. WangF. WuY.T. ZhaoH.Y. ChenM. ZhangL.X. WuS.L. ZhaM.H. Incidence, development, and prognosis of diabetic kidney disease in China: Design and methods.Chin. Med. J.2017130219920210.4103/0366‑6999.19800228091412
    [Google Scholar]
  16. PageJ.E. MorganS.H. EastwoodJ.B. SmithS.A. WebbD.J. DillyS.A. ChowJ. PottierA. JosephA.E.A. Ultrasound findings in renal parenchymal disease: Comparison with histological appearances.Clin. Radiol.1994491286787010.1016/S0009‑9260(05)82877‑67828393
    [Google Scholar]
  17. DrudiF.M. CantisaniV. GranataA. AngeliniF. MessineoD. De FeliceC. EttorreE. Multiparametric ultrasound in the evaluation of kidney disease in elderly.J. Ultrasound202023211512610.1007/s40477‑019‑00390‑531197634
    [Google Scholar]
  18. MukherjeeS. PatraA. KhasawnehH. KorfiatisP. RajamohanN. SumanG. MajumderS. PandaA. JohnsonM.P. LarsonN.B. WrightD.E. KlineT.L. FletcherJ.G. ChariS.T. GoenkaA.H. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis.Gastroenterology2022163514351446.e310.1053/j.gastro.2022.06.06635788343
    [Google Scholar]
  19. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. ParmarC. GrossmannP. CarvalhoS. BussinkJ. MonshouwerR. Haibe-KainsB. RietveldD. HoebersF. RietbergenM.M. LeemansC.R. DekkerA. QuackenbushJ. GilliesR.J. LambinP. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms500624892406
    [Google Scholar]
  20. BandaraM.S. GurunayakaB. LakrajG. PallewatteA. SiribaddanaS. WansapuraJ. Ultrasound based radiomics features of chronic kidney disease.Acad. Radiol.202229222923510.1016/j.acra.2021.01.00633589307
    [Google Scholar]
  21. ZhuL. HuangR. LiM. FanQ. ZhaoX. WuX. DongF. Machine learning–based ultrasound radiomics for evaluating the function of transplanted kidneys.Ultrasound Med. Biol.20224881441145210.1016/j.ultrasmedbio.2022.03.00735599077
    [Google Scholar]
  22. QinX. XiaL. ZhuC. HuX. XiaoW. XieX. ZhangC. Noninvasive evaluation of lupus nephritis activity using a radiomics machine learning model based on ultrasound.J. Inflamm. Res.20231643344110.2147/JIR.S39839936761904
    [Google Scholar]
  23. QinX. XiaL. HuX. XiaoW. HuamingX. XishengX. ZhangC. A novel clinical−radiomic nomogram for the crescent status in IgA nephropathy.Front. Endocrinol. (Lausanne)202314109345210.3389/fendo.2023.109345236742388
    [Google Scholar]
  24. KliewerM.A. TuplerR.H. CarrollB.A. PaineS.S. KriegshauserJ.S. HertzbergB.S. SvetkeyL.P. Renal artery stenosis: Analysis of Doppler waveform parameters and tardus-parvus pattern.Radiology1993189377978710.1148/radiology.189.3.82347048234704
    [Google Scholar]
  25. SolezK. ColvinR.B. RacusenL.C. HaasM. SisB. MengelM. HalloranP.F. BaldwinW. BanfiG. CollinsA.B. CosioF. DavidD.S.R. DrachenbergC. EineckeG. FogoA.B. GibsonI.W. GlotzD. IskandarS.S. KrausE. LerutE. MannonR.B. MihatschM. NankivellB.J. NickeleitV. PapadimitriouJ.C. RandhawaP. RegeleH. RenaudinK. RobertsI. SeronD. SmithR.N. ValenteM. Banff 07 classification of renal allograft pathology: Updates and future directions.Am. J. Transplant.20088475376010.1111/j.1600‑6143.2008.02159.x18294345
    [Google Scholar]
  26. AnY. XuF. LeW. GeY. ZhouM. ChenH. ZengC. ZhangH. LiuZ. Renal histologic changes and the outcome in patients with diabetic nephropathy.Nephrol. Dial. Transplant.201530225726610.1093/ndt/gfu25025063425
    [Google Scholar]
  27. ChenZ. YingM.T.C. WangY. ChenJ. WuC. HanX. SuZ. Ultrasound-based radiomics analysis in the assessment of renal fibrosis in patients with chronic kidney disease.Abdom. Radiol.20234882649265710.1007/s00261‑023‑03965‑337256330
    [Google Scholar]
  28. ZhouT. WangY. ShenL. LiX. JiaoQ. LiZ. JiaJ. HeL. ZhangQ. WangN. FanY. Clinical and histological predictors of renal survival in patients with biopsy-proven diabetic nephropathy.Kidney Dis.2022819310210.1159/00051822235224010
    [Google Scholar]
  29. LiM. LiC. YeZ. RaoJ. PengH. LouT. A retrospective cohort study on the pathology and outcomes of type 2 diabetic patients with renal involvement.Int. Urol. Nephrol.202153233334110.1007/s11255‑020‑02657‑x33021708
    [Google Scholar]
  30. JiangS. DiD. JiaoY. ZouG. GaoH. LiW. Complement deposition predicts worsening kidney function and underlines the clinical significance of the 2010 renal pathology society classification of diabetic nephropathy.Front. Immunol.20221386812710.3389/fimmu.2022.86812735711407
    [Google Scholar]
  31. HuangY. LiangC. HeL. TianJ. LiangC. ChenX. MaZ. LiuZ. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.J. Clin. Oncol.201634182157216410.1200/JCO.2015.65.912827138577
    [Google Scholar]
  32. ZouY. ZhaoL. ZhangJ. WangY. WuY. RenH. WangT. ZhangR. WangJ. ZhaoY. QinC. XuH. LiL. ChaiZ. CooperM.E. TongN. LiuF. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.Ren. Fail.202244156257010.1080/0886022X.2022.205605335373711
    [Google Scholar]
  33. TakataT. KodaM. SugiharaT. SugiharaS. OkamotoT. MiyoshiK. HodotsukaM. FujiseY. MatonoT. OkanoJ. HoshoK. IyamaT. FukuiT. FukudaS. MunemuraC. IsomotoH. Left renal cortical thickness measured by ultrasound can predict early progression of chronic kidney disease.Nephron J.20161321253210.1159/00044195726581096
    [Google Scholar]
  34. HamY.R. LeeE.J. KimH.R. JeonJ.W. NaK.R. LeeK.W. ChoiD.E. Ultrasound renal score to predict the renal disease prognosis in patients with diabetic kidney disease: An investigative study.Diagnostics202313351510.3390/diagnostics1303051536766619
    [Google Scholar]
  35. LvJ. ZhangH. ZhouY. LiG. ZouW. WangH. Natural history of immunoglobulin A nephropathy and predictive factors of prognosis: A long‐term follow up of 204 cases in China.Nephrology200813324224610.1111/j.1440‑1797.2007.00898.x18221258
    [Google Scholar]
  36. FloegeJ. WiedS. RauenT. Assessing prognosis in IgA nephropathy.Kidney Int.20221021222410.1016/j.kint.2022.04.01835738837
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056307336240703100022
Loading
/content/journals/cmir/10.2174/0115734056307336240703100022
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AUC; Diabetic kidney disease; Glomerulopathy; Machine learning; Nomogram; Radiomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test