Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Accurately modeling respiratory motion in medical images is crucial for various applications, including radiation therapy planning. However, existing registration methods often struggle to extract local features effectively, limiting their performance.

Objective

In this paper, we aimed to propose a new framework called CvTMorph, which utilizes a Convolutional vision Transformer (CvT) and Convolutional Neural Networks (CNN) to improve local feature extraction.

Methods

CvTMorph integrates CvT and CNN to construct a hybrid model that combines the strengths of both approaches. Additionally, scaling and square layers are added to enhance the registration performance. We have evaluated the performance of CvTMorph on the 4D-Lung and DIR-Lab datasets and compared it with state-of-the-art methods to demonstrate its effectiveness.

Results

The experimental results have demonstrated CvTMorph to outperform the existing methods in terms of accuracy and robustness for respiratory motion modeling in 4D images. The incorporation of the convolutional vision transformer has significantly improved the registration performance and enhanced the representation of local structures.

Conclusion

CvTMorph offers a promising solution for accurately modeling respiratory motion in 4D medical images. The hybrid model, leveraging convolutional vision transformer and convolutional neural networks, has proven effective in extracting local features and improving registration performance. The results have highlighted the potential of CvTMorph for various applications, such as radiation therapy planning, and provided a basis for further research in this field.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056302592240828074013
2024-01-01
2025-04-13
The full text of this item is not currently available.

References

  1. TanZ. LiuC. ZhouY. ShenW. Preliminary comparison of the registration effect of 4D-CBCT and 3D-CBCT in image-guided radiotherapy of Stage IA non–small-cell lung cancer.J. Radiat. Res.201758685486110.1093/jrr/rrx04028992047
    [Google Scholar]
  2. NakamotoM. AburayaN. SatoY. KonishiK. YoshinoI. HashizumeM. TamuraS. Surgical navigation system for cancer localization in collapsed lung based on estimation of lung deformation, medical image computing and computer-assisted intervention.Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007 pp. 68–76.
    [Google Scholar]
  3. BrostA. WimmerA. LiaoR. BourierF. KochM. StrobelN. KurzidimK. HorneggerJ. Constrained registration for motion compensation in atrial fibrillation ablation procedures.IEEE Trans. Med. Imaging201231487088110.1109/TMI.2011.218118422203705
    [Google Scholar]
  4. KleinS. StaringM. MurphyK. ViergeverM.A. PluimJ. A toolbox for intensity-based medical image registration.IEEE Trans. Med. Imaging201029119620510.1109/TMI.2009.203561619923044
    [Google Scholar]
  5. ShenD. DavatzikosC. HAMMER: hierarchical attribute matching mechanism for elastic registration.IEEE Trans. Med. Imaging200221111421143910.1109/TMI.2002.80311112575879
    [Google Scholar]
  6. AvantsB. EpsteinC. GrossmanM. GeeJ. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain.Med. Image Anal.2008121264110.1016/j.media.2007.06.00417659998
    [Google Scholar]
  7. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation.arXiv2015
    [Google Scholar]
  8. MilletariF. NavabN. AhmadiS-A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation.Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25-28 October 2016, pp.565-571.
    [Google Scholar]
  9. MehtaR. SivaswamyJ. M-net: A Convolutional Neural Network for deep brain structure segmentation.2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI)Melbourne, VIC, 18-21 April 2017, pp.437-440.2017
    [Google Scholar]
  10. BalakrishnanG. ZhaoA. SabuncuM.R. GuttagJ.V. DalcaA.V. An Unsupervised learning model for deformable medical image registration2018 IEEE/CVF Conference on Computer Vision and Pattern RecognitionSalt Lake City, UT, USA, 18-23 June 2018, 9252-9260.10.1109/CVPR.2018.00964
    [Google Scholar]
  11. BalakrishnanG. ZhaoA. SabuncuM.R. GuttagJ. DalcaA.V. VoxelMorph: A learning framework for deformable medical image registration.IEEE Trans. Med. Imaging20193881788180010.1109/TMI.2019.289753830716034
    [Google Scholar]
  12. DosovitskiyA. BeyerL. KolesnikovA. WeissenbornD. ZhaiX. UnterthinerT. DehghaniM. MindererM. HeigoldG. GellyS. UszkoreitJ. HoulsbyN. An image is worth 16x16 words: Transformers for image recognition at scale.ArXiv2021
    [Google Scholar]
  13. ChenJ. HeY. FreyE.C. LiY. DuY. ViT-V-Net: Vision transformer for unsupervised volumetric medical image registration.ArXiv2021
    [Google Scholar]
  14. WuH. XiaoB. CodellaN. C. F. LiuM. DaiX. YuanL. ZhangL. Introducing convolutions to vision transformersArXiv2021
    [Google Scholar]
  15. ChenJ. LuY. YuQ. LuoX. AdeliE. WangY. LuL. YuilleA.L. ZhouY. TransUNet: Transformers make strong encoders for medical image segmentation.ArXiv2021
    [Google Scholar]
  16. AshburnerJ. A fast diffeomorphic image registration algorithm.Neuroimage20073819511310.1016/j.neuroimage.2007.07.00717761438
    [Google Scholar]
  17. DalcaA.V. BalakrishnanG. GuttagJ. SabuncuM.R. Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces.Med. Image Anal.20195722623610.1016/j.media.2019.07.00631351389
    [Google Scholar]
  18. JaderbergM. SimonyanK. ZissermanA. KavukcuogluK. Spatial transformer networks.ArXiv2015
    [Google Scholar]
  19. BalikS. WeissE. JanN. RomanN. SleemanW.C. FatygaM. ChristensenG.E. ZhangC. MurphyM.J. LuJ. KeallP. WilliamsonJ.F. HugoG.D. Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.201386237237910.1016/j.ijrobp.2012.12.02323462422
    [Google Scholar]
  20. ClarkK. VendtB. SmithK. FreymannJ. KirbyJ. KoppelP. MooreS. PhillipsS. MaffittD. PringleM. TarboxL. PriorF. The Cancer imaging archive (TCIA): Maintaining and operating a public information repository.J. Digit. Imaging20132661045105710.1007/s10278‑013‑9622‑723884657
    [Google Scholar]
  21. HugoG.D. WeissE. SleemanW.C. BalikS. KeallP.J. LuJ. WilliamsonJ.F. A longitudinal four‐dimensional computed tomography and cone beam computed tomography dataset for image‐guided radiation therapy research in lung cancer.Med. Phys.201744276277110.1002/mp.1205927991677
    [Google Scholar]
  22. RomanN.O. ShepherdW. MukhopadhyayN. HugoG.D. WeissE. Interfractional positional variability of fiducial markers and primary tumors in locally advanced non-small-cell lung cancer during audiovisual biofeedback radiotherapy.Int. J. Radiat. Oncol. Biol. Phys.20128351566157210.1016/j.ijrobp.2011.10.05122391105
    [Google Scholar]
  23. CastilloR. CastilloE. GuerraR. JohnsonV.E. McPhailT. GargA.K. GuerreroT. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.Phys. Med. Biol.20095471849187010.1088/0031‑9155/54/7/00119265208
    [Google Scholar]
  24. CastilloE. CastilloR. MartinezJ. ShenoyM. GuerreroT. Four-dimensional deformable image registration using trajectory modeling.Phys. Med. Biol.201055130532710.1088/0031‑9155/55/1/01820009196
    [Google Scholar]
  25. DiceL.R. Measures of the amount of ecologic association between species.Ecology194526329730210.2307/1932409
    [Google Scholar]
  26. ZhouZ. SiddiqueeM.M.R. TajbakhshN. LiangJ. UNet++: A Nested u-net architecture for medical image segmentation, deep learning in medical image analysis and multimodal learning for clinical decision support.ArXiv2018
    [Google Scholar]
  27. ZhouZ. SiddiqueeM.M. TajbakhshN. LiangJ. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation.IEEE Trans. Med. Imaging20203961856186710.1109/TMI.2019.295960931841402
    [Google Scholar]
  28. FedorovA. BeichelR. Kalpathy-CramerJ. FinetJ. Fillion-RobinJ.C. PujolS. BauerC. JenningsD. FennessyF. SonkaM. BuattiJ. AylwardS. MillerJ.V. PieperS. KikinisR. 3D Slicer as an image computing platform for the Quantitative Imaging Network.Magn. Reson. Imag.20123091323134110.1016/j.mri.2012.05.00122770690
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056302592240828074013
Loading
/content/journals/cmir/10.2174/0115734056302592240828074013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test