Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Patients with diffuse large B-cell lymphoma (DLBCL) often experience a poor prognosis due to cardiac damage induced by anthracycline chemotherapy, with left ventricular diastolic dysfunction manifesting early. Vector Flow Mapping (VFM) is a novel technology, and its effectiveness in detecting left ventricular diastolic dysfunction following anthracycline chemotherapy remains unverified.

Object

This study evaluates left ventricular diastolic function in DLBCL patients after anthracycline chemotherapy using vector flow mapping (VFM).

Materials and Methods

We prospectively enrolled 54 DLBCL patients who had undergone anthracycline chemotherapy (receiving a minimum of 4 cycles) as the case group and 54 age- and sex-matched individuals as controls. VFM assessments were conducted in the case group pre-chemotherapy (T0), post-4 chemotherapy cycles (T4), and in the control group. Measurements included basal, middle, and apical segment energy loss (ELb, ELm, ELa) and intraventricular pressure differences (IVPDb, IVPDm, IVPDa) across four diastolic phases: isovolumic relaxation (D1), rapid filling (D2), slow filling (D3), and atrial contraction (D4).

Results

When comparing parameters between the control and case groups at T0, no significant differences were observed in general data, conventional ultrasound parameters, and VFM parameters (all P > 0.05). From T0 to T4, ELa significantly increased throughout the diastole cycle (all P < 0.05); ELm increased only during D4 (all P < 0.05); and ELb increased during D1, D2, and D4 (all P < 0.05). All IVPD measurements (IVPDa, IVPDm, IVPDb) increased during D1 and D4 (all P < 0.05) but decreased during D2 and D3 (all P < 0.05). Significant positive correlations were identified between ELa-D4, IVPDa-D4, and parameters A, e’, E/e,’ and LAVI (all r > 0.5, all P < 0.001). Negative correlations were noted with E/A for ELa-D4 IVPDa-D4 (all r < -0.5, all P < 0.001). Positive correlations were observed for IVPDa-D1, IVPDa-D2 with E, E/e’, and LAVI (0.3<r<0.5, all P<0.001).

Conclusion

VFM parameters demonstrate a certain correlation with conventional diastolic function parameters and show promise in assessing left ventricular diastolic function. Furthermore, VFM parameters exhibit greater sensitivity to early diastolic function changes, suggesting that VFM could be a novel method for evaluating differences in left ventricular diastolic function in DLBCL patients before and after chemotherapy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056298648240604072237
2024-01-01
2025-04-23
The full text of this item is not currently available.

References

  1. LiS. YoungK.H. MedeirosL.J. Diffuse large B-cell lymphoma.Pathology2018501748710.1016/j.pathol.2017.09.00629167021
    [Google Scholar]
  2. GuoZ. JavaheriA. INKing the cardiotoxicity out of doxorubicin.JACC Basic Transl. Sci.2023881008100910.1016/j.jacbts.2023.05.00137719425
    [Google Scholar]
  3. UpshawJ.N. FinkelmanB. HubbardR.A. SmithA.M. NarayanH.K. ArndtL. DomchekS. DeMicheleA. FoxK. ShahP. ClarkA. BradburyA. MatroJ. AdusumalliS. CarverJ.R. KyB. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy.JACC Cardiovasc. Imaging202013119821010.1016/j.jcmg.2019.07.01831542526
    [Google Scholar]
  4. GuoX. GongC. SongR. WanK. HanY. ChenY. First-pass perfusion cardiovascular magnetic resonance parameters as surrogate markers for left ventricular diastolic dysfunction: A validation against cardiac catheterization.Eur. Radiol.202232128131813910.1007/s00330‑022‑08938‑635779091
    [Google Scholar]
  5. FoulkesS.J. HowdenE.J. HaykowskyM.J. AntillY. SalimA. NightingaleS.S. LoiS. ClausP. JanssensK. MitchellA.M. WrightL. CostelloB.T. LindqvistA. BurnhamL. WallaceI. DalyR.M. FraserS.F. La GercheA. Exercise for the prevention of anthracycline-induced functional disability and cardiac dysfunction: The BREXIT study.Circulation2023147753254510.1161/CIRCULATIONAHA.122.06281436342348
    [Google Scholar]
  6. NaguehS.F. SmisethO.A. AppletonC.P. ByrdB.F.III DokainishH. EdvardsenT. FlachskampfF.A. GillebertT.C. KleinA.L. LancellottiP. MarinoP. OhJ.K. Alexandru PopescuB. WaggonerA.D. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the american society of echocardiography and the european association of cardiovascular imaging.Eur. Heart J. Cardiovasc. Imaging201617121321136010.1093/ehjci/jew08227422899
    [Google Scholar]
  7. MauermannE. VandenheuvelM. FrançoisK. BouchezS. WoutersP. Right ventricular systolic assessment by transesophageal versus transthoracic echocardiography: Displacement, velocity, and myocardial deformation.J. Cardiothorac. Vasc. Anesth.20203482152216110.1053/j.jvca.2020.03.00932423734
    [Google Scholar]
  8. MatsuuraK. ShiraishiK. SatoK. ShimadaK. GoyaS. UemuraA. IfukuM. IsoT. TakahashiK. TanakaR. Left ventricular vortex and intraventricular pressure difference in dogs under various loading conditions.Am. J. Physiol. Heart Circ. Physiol.20193164H882H88810.1152/ajpheart.00686.201830735074
    [Google Scholar]
  9. AssiK.C. GayE. ChnafaC. MendezS. NicoudF. AbascalJ.F.P.J. LantelmeP. TournouxF. GarciaD. Intraventricular vector flow mapping—a Doppler-based regularized problem with automatic model selection.Phys. Med. Biol.201762177131714710.1088/1361‑6560/aa7fe728800300
    [Google Scholar]
  10. WangY. MaR. DingG. HouD. LiZ. YinL. ZhangM. Left ventricular energy loss assessed by vector flow mapping in patients with prediabetes and type 2 diabetes mellitus.Ultrasound Med. Biol.20164281730174010.1016/j.ultrasmedbio.2016.03.00827126237
    [Google Scholar]
  11. ZuoX. YuanM. JiaH. ZhangM. ZhangC. ZhiG. Vector flow mapping application in local cardiac function in hypertension assessment.Int. J. Gen. Med.2021144793480110.2147/IJGM.S31580634466024
    [Google Scholar]
  12. XiaoQ. ZhaoX. YangR. LiZ. LiD. XieY. MaoX. WangY. YinL. LiC. ZuoM. MengQ. LiW. LiuX. LiZ. ZhangQ. DengY. Assessment of left ventricular energy loss in patients with mild coronary artery stenosis by using vector flow mapping combined with exercise stress echocardiography.Echocardiography202340653754910.1111/echo.1559137178387
    [Google Scholar]
  13. BartlettN.L. WilsonW.H. JungS.H. HsiE.D. MaurerM.J. PedersonL.D. PolleyM.Y.C. PitcherB.N. ChesonB.D. KahlB.S. FriedbergJ.W. StaudtL.M. Wagner-JohnstonN.D. BlumK.A. AbramsonJ.S. ReddyN.M. WinterJ.N. ChangJ.E. GopalA.K. ChadburnA. MathewS. FisherR.I. RichardsK.L. SchöderH. ZelenetzA.D. LeonardJ.P. Dose-adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-cell lymphoma: Clinical outcomes of the Phase III intergroup trial alliance/CALGB 50303.J. Clin. Oncol.201937211790179910.1200/JCO.18.0199430939090
    [Google Scholar]
  14. CuriglianoG. LenihanD. FradleyM. GanatraS. BaracA. BlaesA. HerrmannJ. PorterC. LyonA.R. LancellottiP. PatelA. DeCaraJ. MitchellJ. HarrisonE. MoslehiJ. WittelesR. CalabroM.G. OrecchiaR. de AzambujaE. ZamoranoJ.L. KroneR. IakobishviliZ. CarverJ. ArmenianS. KyB. CardinaleD. CipollaC.M. DentS. JordanK. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations.Ann. Oncol.202031217119010.1016/j.annonc.2019.10.02331959335
    [Google Scholar]
  15. BhagatA. KleinermanE.S. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention.Adv. Exp. Med. Biol.2020125718119210.1007/978‑3‑030‑43032‑0_1532483740
    [Google Scholar]
  16. Abdar EsfahaniM. MokarianF. KarimipanahM. Alterations in the echocardiographic variables of the right ventricle in asymptomatic patients with breast cancer during anthracycline chemotherapy.Postgrad. Med. J.201793109927127410.1136/postgradmedj‑2016‑13428627651497
    [Google Scholar]
  17. JinC. ShiX. WangT. LiH. ZhangD.X. ShengZ. XiaoJ. YuY.Q. Value of echocardiography and cardiac magnetic resonance in assessing left ventricular function in breast and gastric cancer patients after anthracycline chemotherapy.BMC Cardiovasc. Disord.202323146510.1186/s12872‑023‑03495‑237715125
    [Google Scholar]
  18. ZhangY. WangJ. SuiX. LiY. LuK. FangX. JiangY. WangX. Prognostic and clinicopathological value of survivin in diffuse large B-cell lymphoma.Medicine20159436e143210.1097/MD.000000000000143226356696
    [Google Scholar]
  19. DwivediG. KleinR. BhatS. DiasP.S. DentS. Does diastolic dysfunction precede systolic dysfunction following contemporary breast cancer therapy?JACC Cardiovasc. Imaging20201361454145510.1016/j.jcmg.2020.03.01932498924
    [Google Scholar]
  20. MolinaroM. AmeriP. MaroneG. PetrettaM. AbeteP. Di LisaF. De PlacidoS. BonaduceD. TocchettiC.G. Recent advances on pathophysiology, diagnostic and therapeutic insights in cardiac dysfunction induced by antineoplastic drugs.BioMed Res. Int.2015201511410.1155/2015/13814826583088
    [Google Scholar]
  21. SongF. KangY. ZhangC. XuY. ShiJ. GuoY. ZhangQ. ShuX. ChengL. The early variation of left ventricular twisting function in patients with lymphoma received anthracycline therapy assessed by three-dimensional speckle tracking echocardiography.Cardiol. J.201724548449410.5603/CJ.a2017.003528353310
    [Google Scholar]
  22. SanchoJ.M. Fernández-AlvarezR. Gual-CapllonchF. González-GarcíaE. GrandeC. GutiérrezN. PeñarrubiaM.J. Batlle-LópezA. González-BarcaE. GuineaJ.M. GimenoE. PeñalverF.J. FuertesM. BastosM. Hernández-RivasJ.Á. MoraledaJ.M. GarcíaO. SoriguéM. MartinA. R‐COMP versus R‐CHOP as first‐line therapy for diffuse large B‐cell lymphoma in patients ≥60 years: Results of a randomized phase 2 study from the Spanish GELTAMO group.Cancer Med.20211041314132610.1002/cam4.373033492774
    [Google Scholar]
  23. de BaatE.C. MulderR.L. ArmenianS. FeijenE.A.M. GrotenhuisH. HudsonM.M. Mavinkurve-GroothuisA.M.C. KremerL.C.M. van DalenE.C. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines.Cochrane Libr.202299CD01463810.1002/14651858.CD014638.pub236162822
    [Google Scholar]
  24. MinottiG. MennaP. CamilliM. SalvatorelliE. ReggiardoG. Predictors of early or delayed diastolic dysfunction after anthracycline-based or nonanthracycline chemotherapy: A pharmacological appraisal.J. Pharmacol. Exp. Ther.2021376223123910.1124/jpet.120.00032333168644
    [Google Scholar]
  25. HongJ. ZhangY. WangY. ZhangT. WangX. XuD. Influence of a single hemodialysis on left ventricular energy loss and wall shear stress in patients with uremic cardiomyopathy assessed with vector flow mapping.Quant. Imaging Med. Surg.20221284059406810.21037/qims‑21‑108335919051
    [Google Scholar]
  26. HoS.Y. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease.Eur. J. Echocardiogr.2009108iii3iii710.1093/ejechocard/jen24319889656
    [Google Scholar]
  27. FukunagaM. FujiiK. MintzG.S. KawasakiD. NakataT. MikiK. ImanakaT. TamaruH. ShibuyaM. MasuyamaT. Distribution of pressure gradients along the left anterior descending artery in patients with angiographically normal arteries.Catheter. Cardiovasc. Interv.2020961E67E7410.1002/ccd.2854431609096
    [Google Scholar]
  28. WangY. HongJ. YuR. XuD. Evaluation of left ventricular function by vector flow mapping in females with systemic lupus erythematosus.Clin. Rheumatol.202140104049406010.1007/s10067‑021‑05747‑y33903978
    [Google Scholar]
  29. HodzicA. GarciaD. SalouxE. RibeiroP.A.B. EthierA. ThomasJ.D. MilliezP. NormandH. TournouxF. Echocardiographic evidence of left ventricular untwisting-filling interplay.Cardiovasc. Ultrasound2020181810.1186/s12947‑020‑00190‑632075637
    [Google Scholar]
  30. ChenM. JinJ. ZhangY. GaoY. LiuS. Assessment of left ventricular diastolic dysfunction based on the intraventricular velocity difference by vector flow mapping.J. Ultrasound Med.201332122063207110.7863/ultra.32.12.206324277887
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056298648240604072237
Loading
/content/journals/cmir/10.2174/0115734056298648240604072237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test