Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

Accurate prediction of recurrence risk after resction in patients with Hepatocellular Carcinoma (HCC) may help to individualize therapy strategies. This study aimed to develop machine learning models based on preoperative clinical factors and multiparameter Magnetic Resonance Imaging (MRI) characteristics to predict the 1-year recurrence after HCC resection.

Methods

Eighty-two patients with single HCC who underwent surgery were retrospectively analyzed. All patients underwent preoperative gadoxetic acid-enhanced MRI examination. Preoperative clinical factors and MRI characteristics were collected for feature selection. Least Absolute Shrinkage and Selection Operator (LASSO) was applied to select the optimal features for predicting postoperative 1-year recurrence of HCC. Four machine learning algorithms, Multilayer Perception (MLP), random forest, support vector machine, and k-nearest neighbor, were used to construct the predictive models based on the selected features. A Receiver Operating Characteristic (ROC) curve was used to assess the performance of each model.

Results

Among the enrolled patients, 32 patients experienced recurrences within one year, while 50 did not. Tumor size, peritumoral hypointensity, decreasing ratio of liver parenchyma T1 value (ΔT1), and α-fetoprotein (AFP) levels were selected by using LASSO to develop the machine learning models. The area under the curve (AUC) of each model exceeded 0.72. Among the models, the MLP model showed the best performance with an AUC, accuracy, sensitivity, and specificity of 0.813, 0.742, 0.570, and 0.853, respectively.

Conclusion

Machine learning models can accurately predict postoperative 1-year recurrence in patients with HCC, which may help to provide individualized treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056293489240226064955
2024-01-01
2025-06-19
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. BensonA.B. D’AngelicaM.I. AbbottD.E. AnayaD.A. AndersR. AreC. BachiniM. BoradM. BrownD. BurgoyneA. ChahalP. ChangD.T. CloydJ. CoveyA.M. GlazerE.S. GoyalL. HawkinsW.G. IyerR. JacobR. KelleyR.K. KimR. LevineM. PaltaM. ParkJ.O. RamanS. ReddyS. SahaiV. SchefterT. SinghG. SteinS. VautheyJ.N. VenookA.P. YoppA. McMillianN.R. HochstetlerC. DarlowS.D. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202119554156510.6004/jnccn.2021.002234030131
    [Google Scholar]
  3. HeimbachJ.K. KulikL.M. FinnR.S. SirlinC.B. AbecassisM.M. RobertsL.R. ZhuA.X. MuradM.H. MarreroJ.A. AASLD guidelines for the treatment of hepatocellular carcinoma.Hepatology201867135838010.1002/hep.2908628130846
    [Google Scholar]
  4. ChokK.S. NgK.K. PoonR.T. LoC.M. FanS.T. Impact of postoperative complications on long-term outcome of curative resection for hepatocellular carcinoma.Br. J. Surg.2008961818710.1002/bjs.635819065644
    [Google Scholar]
  5. KianmaneshR. RegimbeauJ.M. BelghitiJ. Selective approach to major hepatic resection for hepatocellular carcinoma in chronic liver disease.Surg. Oncol. Clin. N. Am.2003121516310.1016/S1055‑3207(02)00090‑X12735129
    [Google Scholar]
  6. HirokawaF. HayashiM. MiyamotoY. AsakumaM. ShimizuT. KomedaK. InoueY. UchiyamaK. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma.Hepatol. Res.201444884685310.1111/hepr.1219623834279
    [Google Scholar]
  7. Ozer EtikD. SunaN. BoyaciogluA.S. Management of hepatocellular carcinoma: Prevention, surveillance, diagnosis, and staging.Exp. Clin. Transplant.201715Suppl. 2313528301996
    [Google Scholar]
  8. LuX. ZhaoH. YangH. MaoY. SangX. MiaoR. XuY. DuS. XuH. ChiT. YangZ. ZhongS. HuangJ. A prospective clinical study on early recurrence of hepatocellular carcinoma after hepatectomy.J. Surg. Oncol.2009100648849310.1002/jso.2135419653238
    [Google Scholar]
  9. QiY.P. ZhongJ.H. LiangZ.Y. ZhangJ. ChenB. ChenC.Z. LiL.Q. XiangB.D. Adjuvant transarterial chemoembolization for patients with hepatocellular carcinoma involving microvascular invasion.Am. J. Surg.2019217473974410.1016/j.amjsurg.2018.07.05430103903
    [Google Scholar]
  10. AnC. KimD.W. ParkY.N. ChungY.E. RheeH. KimM.J. Single hepatocellular carcinoma: Preoperative MR imaging to predict early recurrence after curative resection.Radiology2015276243344310.1148/radiol.1514239425751229
    [Google Scholar]
  11. LeeS. KimS.H. LeeJ.E. SinnD.H. ParkC.K. Preoperative gadoxetic acid–enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma.J. Hepatol.201767352653410.1016/j.jhep.2017.04.02428483680
    [Google Scholar]
  12. PengZ. JiangM. CaiH. ChanT. DongZ. LuoY. LiZ.P. FengS.T. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma.BMC Cancer201616162510.1186/s12885‑016‑2607‑427520833
    [Google Scholar]
  13. HaimerlM. VerlohN. ZemanF. FellnerC. Müller-WilleR. SchreyerA.G. StroszczynskiC. WiggermannP. Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI.PLoS One2013812e8565810.1371/journal.pone.008565824392025
    [Google Scholar]
  14. GreenerJ.G. KandathilS.M. MoffatL. JonesD.T. A guide to machine learning for biologists.Nat. Rev. Mol. Cell Biol.2022231405510.1038/s41580‑021‑00407‑034518686
    [Google Scholar]
  15. WangY. JiC. WangY. JiM. YangJ.J. ZhouC.M. Predicting postoperative liver cancer death outcomes with machine learning.Curr. Med. Res. Opin.202137462963410.1080/03007995.2021.188536133539249
    [Google Scholar]
  16. DongZ. LinY. LinF. LuoX. LinZ. ZhangY. LiL. LiZ.P. FengS.T. CaiH. PengZ. Prediction of early treatment response to initial conventional transarterial chemoembolization therapy for hepatocellular carcinoma by machine-learning model based on computed tomography.J. Hepatocell. Carcinoma202181473148410.2147/JHC.S33467434877267
    [Google Scholar]
  17. İnceO. ÖnderH. GençtürkM. CebeciH. GolzarianJ. YoungS. Machine learning models in prediction of treatment response after chemoembolization with MRI clinicoradiomics features.Cardiovasc. Intervent. Radiol.202346121732174210.1007/s00270‑023‑03574‑z37884802
    [Google Scholar]
  18. DongX. YangJ. ZhangB. LiY. WangG. ChenJ. WeiY. ZhangH. ChenQ. JinS. WangL. HeH. GanM. JiW. Deep learning radiomics model of dynamic contrast‐enhanced mri for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma.J. Magn. Reson. Imaging202459110811910.1002/jmri.2874537078470
    [Google Scholar]
  19. ZhouY. HeL. HuangY. ChenS. WuP. YeW. LiuZ. LiangC. CT-based radiomics signature: A potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma.Abdom. Radiol.20174261695170410.1007/s00261‑017‑1072‑028180924
    [Google Scholar]
  20. ZhangZ. JiangH. ChenJ. WeiY. CaoL. YeZ. LiX. MaL. SongB. Hepatocellular carcinoma: Radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction.Cancer Imaging20191912210.1186/s40644‑019‑0209‑531088553
    [Google Scholar]
  21. ZhongB.Y. YanZ.P. SunJ.H. ZhangL. HouZ.H. ZhuX.L. WenL. NiC.F. Random survival forests to predict disease control for hepatocellular carcinoma treated with transarterial chemoembolization combined with sorafenib.Front. Mol. Biosci.2021861805010.3389/fmolb.2021.61805034095216
    [Google Scholar]
  22. CurrieG. HawkK.E. RohrenE. VialA. KleinR. Machine learning and deep learning in medical imaging: Intelligent imaging.J. Med. Imaging Radiat. Sci.201950447748710.1016/j.jmir.2019.09.00531601480
    [Google Scholar]
  23. ZhongY.W. JiangY. DongS. WuW.J. WangL.X. ZhangJ. HuangM.W. Tumor radiomics signature for artificial neural network-assisted detection of neck metastasis in patient with tongue cancer.J. Neuroradiol.202249221321810.1016/j.neurad.2021.07.00634358534
    [Google Scholar]
  24. HuangY. WeiL. HuY. ShaoN. LinY. HeS. ShiH. ZhangX. LinY. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer.Front. Oncol.20211170673310.3389/fonc.2021.70673334490107
    [Google Scholar]
  25. LeeJ.H. LeeJ.M. KimS.J. BaekJ.H. YunS.H. KimK.W. HanJ.K. ChoiB.I. Enhancement patterns of hepatocellular carcinomas on multiphasic multidetector row CT: Comparison with pathological differentiation.Br. J. Radiol.2012851017e573e58310.1259/bjr/8676789522919011
    [Google Scholar]
  26. PawlikT.M. DelmanK.A. VautheyJ.N. NagorneyD.M. NgI.O.L. IkaiI. YamaokaY. BelghitiJ. LauwersG.Y. PoonR.T. AbdallaE.K. Tumor size predicts vascular invasion and histologic grade: Implications for selection of surgical treatment for hepatocellular carcinoma.Liver Transpl.20051191086109210.1002/lt.2047216123959
    [Google Scholar]
  27. KamiyamaT. NakanishiK. YokooH. KamachiH. TaharaM. KakisakaT. TsurugaY. TodoS. TaketomiA. Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma.World J. Surg. Oncol.201210110710.1186/1477‑7819‑10‑10722697061
    [Google Scholar]
  28. ShimodaM. TagoK. ShirakiT. MoriS. KatoM. AokiT. KubotaK. Risk factors for early recurrence of single lesion hepatocellular carcinoma after curative resection.World J. Surg.201640102466247110.1007/s00268‑016‑3529‑727138886
    [Google Scholar]
  29. LuY. ZhuM. LiW. LinB. DongX. ChenY. XieX. GuoJ. LiM. Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells.J. Cell. Mol. Med.201620354955810.1111/jcmm.1274526756858
    [Google Scholar]
  30. BaeJ.S. KimJ.H. LeeD.H. Hepatobiliary phase of gadoxetic acid-enhanced MRI in patients with HCC: Prognostic features before resection, ablation, or TACE.Eur. Radiol.20213163627363710.1007/s00330‑020‑07499‑w33211146
    [Google Scholar]
  31. KimK.A. KimM.J. JeonH.M. KimK.S. ChoiJ.S. AhnS.H. ChaS.J. ChungY.E. Prediction of microvascular invasion of hepatocellular carcinoma: Usefulness of peritumoral hypointensity seen on gadoxetate disodium‐enhanced hepatobiliary phase images.J. Magn. Reson. Imaging201235362963410.1002/jmri.2287622069244
    [Google Scholar]
  32. RenzulliM. BrocchiS. CucchettiA. MazzottiF. MosconiC. SportolettiC. BrandiG. PinnaA.D. GolfieriR. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?Radiology2016279243244210.1148/radiol.201515099826653683
    [Google Scholar]
  33. TsudaN. MatsuiO. Cirrhotic rat liver: Reference to transporter activity and morphologic changes in bile canaliculi--gadoxetic acid-enhanced MR imaging.Radiology2010256376777310.1148/radiol.1009206520663976
    [Google Scholar]
  34. DingY. RaoS.X. MengT. ChenC. LiR. ZengM.S. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease.Eur. Radiol.201424495996610.1007/s00330‑014‑3096‑y24463697
    [Google Scholar]
  35. ChenC.Y. ChenJ. XiaC.C. HuangZ.X. SongB. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.J. Biol. Regul. Homeost. Agents20173141029103629254310
    [Google Scholar]
  36. YinT. HeS. LiuX. JiangW. YeT. LinZ. SangY. SuC. WanY. ShenG. MaX. YuM. GuoF. LiuY. LiL. HuQ. WangY. WeiY. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.J. Immunol.2015194142943710.4049/jimmunol.140064325429070
    [Google Scholar]
  37. LeeS. KimS.H. HwangJ.A. LeeJ.E. HaS.Y. Pre-operative ADC predicts early recurrence of HCC after curative resection.Eur. Radiol.20192921003101210.1007/s00330‑018‑5642‑530027408
    [Google Scholar]
  38. TangM. ZhouQ. HuangM. SunK. WuT. LiX. LiaoB. ChenL. LiaoJ. PengS. ChenS. FengS.T. Nomogram development and validation to predict hepatocellular carcinoma tumor behavior by preoperative gadoxetic acid-enhanced MRI.Eur. Radiol.202131118615862710.1007/s00330‑021‑07941‑733877387
    [Google Scholar]
  39. KimJ.M. KwonC.H.D. JohJ.W. YooH. KimK. SinnD.H. ChoiG.S. LeeJ.H. Nomograms in hepatectomy patients with hepatitis B virus-related hepatocellular carcinoma.J. Gastrointest. Surg.20192381559156710.1007/s11605‑018‑04074‑z30671793
    [Google Scholar]
  40. NodaT. NaganoH. TomimaruY. MurakamiM. WadaH. KobayashiS. MarubashiS. EguchiH. TakedaY. TanemuraM. UmeshitaK. KimT. WakasaK. DokiY. MoriM. Prognosis of hepatocellular carcinoma with biliary tumor thrombi after liver surgery.Surgery2011149337137710.1016/j.surg.2010.08.00620869094
    [Google Scholar]
  41. ChoiS.Y. KimS.H. ParkC.K. MinJ.H. LeeJ.E. ChoiY.H. LeeB.R. Imaging features of gadoxetic acid–enhanced and diffusion-weighted MR imaging for identifying cytokeratin 19-positive hepatocellular carcinoma: A retrospective observational study.Radiology2018286389790810.1148/radiol.201716284629166246
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056293489240226064955
Loading
/content/journals/cmir/10.2174/0115734056293489240226064955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test