Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

The pathogenesis of breast cancer is characterized by dysregulated cell proliferation, leading to the formation of a neoplastic mass. Conventional methodologies for analyzing carcinomatous distal areas within whole-slide images (WSIs) tissue regions may lack comprehensive insights.

Purpose

This study aims to introduce an innovative methodology based on convolutional neural networks (CNN), specifically employing a CNN Modified ResNet architecture for breast cancer detection. The research seeks to address the limitations of existing approaches and provide a robust solution for the comprehensive analysis of tissue regions.

Methods

The dataset utilized in this study comprises approximately 275,000 RGB image patches, each standardized at 50x50 pixels. The CNN Modified ResNet architecture is implemented, and a comparative evaluation against diverse architectures is conducted. Rigorous validation tests employing established performance metrics are carried out to assess the proposed methodology.

Results

The proposed architecture achieves a notable 89% accuracy in breast cancer detection, surpassing alternative methods by 2%. The results signify the efficacy and superiority of the CNN Modified ResNet model in analyzing carcinomatous distal areas within WSIs tissue regions.

Conclusion

In conclusion, this study demonstrates the potential of the CNN Modified ResNet architecture as an effective tool for breast cancer detection. The enhanced accuracy and comprehensive analysis capabilities make it a promising approach for advancing the understanding of neoplastic masses in WSIs tissue regions. Further research and validation could solidify its role in clinical applications and diagnostic procedures.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056290499240402102301
2024-01-01
2025-05-29
The full text of this item is not currently available.

References

  1. MorganE. ArnoldM. GiniA. LorenzoniV. CabasagC.J. LaversanneM. VignatJ. FerlayJ. MurphyN. BrayF. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN.Gut202372233834410.1136/gutjnl‑2022‑32773636604116
    [Google Scholar]
  2. FrickC. RumgayH. VignatJ. GinsburgO. NolteE. BrayF. SoerjomataramI. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: A population-based study.Lancet Glob. Health20231111e1700e171210.1016/S2214‑109X(23)00406‑037774721
    [Google Scholar]
  3. HuangJ. ChanS.C. NgaiC.H. LokV. ZhangL. Lucero-PrisnoD.E.III XuW. ZhengZ.J. ElcarteE. WithersM. WongM.C.S. Global incidence, mortality and temporal trends of cancer in children: A joinpoint regression analysis.Cancer Med.20231221903191110.1002/cam4.500935822443
    [Google Scholar]
  4. SantosA.C. WillumsenJ. MeheusF. IlbawiA. BullF.C. The cost of inaction on physical inactivity to public health-care systems: A population-attributable fraction analysis.Lancet Glob. Health2023111e32e3910.1016/S2214‑109X(22)00464‑836480931
    [Google Scholar]
  5. PapadoliopoulouM. MatiatouM. KoutsoumposS. MulitaF. GianniosP. MargarisI. MoutzourisK. ArkadopoulosN. MichalopoulosN.V. Optical imaging in human lymph node specimens for detecting breast cancer metastases: A review.Cancers (Basel)20231522543810.3390/cancers1522543838001697
    [Google Scholar]
  6. MughalB. SharifM. Automated detection of breast tumor in different imaging modalities: A review.Curr. Med. Imaging Rev.201713212113910.2174/1573405612666160901121802
    [Google Scholar]
  7. PinkertM.A. SalkowskiL.R. KeelyP.J. HallT.J. BlockW.F. EliceiriK.W. Review of quantitative multiscale imaging of breast cancer.J. Med. Imaging201851110.1117/1.JMI.5.1.01090129392158
    [Google Scholar]
  8. KarimS. QadirA. FarooqU. ShakirM. LaghariA.A. Hyperspectral imaging: A review and trends towards medical imaging.Curr. Med. Imaging2023195417427
    [Google Scholar]
  9. AlboaneenD. AlqarniR. AlqahtaniS. AlrashidiM. AlhudaR. AlyahyanE. AlshammariT. Predicting colorectal cancer using machine and deep learning algorithms: Challenges and opportunities.Big Data Cogn. Comput2023727410.3390/bdcc7020074
    [Google Scholar]
  10. DembrowerK. CrippaA. ColónE. EklundM. StrandF. Artificial intelligence for breast cancer detection in screening mammography in Sweden: A prospective, population-based, paired-reader, non-inferiority study.Lancet Digit. Health2023510e703e71110.1016/S2589‑7500(23)00153‑X37690911
    [Google Scholar]
  11. Nouri PourJ. PourminaM.A. MoghaddasiM.N. GhalamkariB. Estimate the Location of a Breast Tumor using the Received Signal Angle.Majlesi J. Telecommun. Dev.202312116
    [Google Scholar]
  12. PourminaM.A. NouripourJ. MoghaddasiM.N. GhalamkariB. Estimation of breast tumor location using phase information and received signal delay.Skin (Los Angeles)2022436
    [Google Scholar]
  13. NithyaV.P. An early detection and classification of alzheimer’s disease framework based on ResNet-50.Curr. Med. Imaging202320110.2174/1573405620666230825113344
    [Google Scholar]
  14. ShinM. PengZ. KimH.J. YooS.S. YoonK. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation.Comput. Methods Programs Biomed.202323710759110.1016/j.cmpb.2023.10759137182263
    [Google Scholar]
  15. Chetcuti ZammitS. McAlindonM.E. GreenblattE. MakerM. SiegelmanJ. LefflerD.A. YardibiO. RaunigD. BrownT. SidhuR. Quantification of celiac disease severity using video capsule endoscopy: A comparison of human experts and machine learning algorithms.Curr. Med. Imaging Rev.20231912e23012321299810.2174/157340561966623012311095736694320
    [Google Scholar]
  16. MasudM. Eldin RashedA.E. HossainM.S. Convolutional neural network-based models for diagnosis of breast cancer.Neural Comput. Appl.20233414113839433052172
    [Google Scholar]
  17. MuhammadG. HossainM.S. KumarN. EEG-based pathology detection for home health monitoring.IEEE J. Sel. Areas Comm.202139260361010.1109/JSAC.2020.3020654
    [Google Scholar]
  18. ZhangY. MaX. ZhangJ. HossainM.S. MuhammadG. AminS.U. Edge intelligence in the cognitive Internet of Things: Improving sensitivity and interactivity.IEEE Netw.2019333586410.1109/MNET.2019.1800344
    [Google Scholar]
  19. LiS. NguyenH.T. CheahC.C. A theoretical framework for end-to-end learning of deep neural networks with applications to robotics.IEEE Access202311219922200610.1109/ACCESS.2023.3249280
    [Google Scholar]
  20. TayeM.M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions.Computation (Basel)20231135210.3390/computation11030052
    [Google Scholar]
  21. SinghS. TripathiB.K. RawatS.S. Deep quaternion convolutional neural networks for breast Cancer classification.Multimedia Tools Appl.20238220312853130810.1007/s11042‑023‑14688‑4
    [Google Scholar]
  22. MoridM.A. ShengO.R.L. DunbarJ. Time series prediction using deep learning methods in healthcare.ACM Trans. Manag. Inf. Syst.202314112910.1145/3531326
    [Google Scholar]
  23. MaY. ShanC. GaoJ. ChenH. Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method.Reliab. Eng. Syst. Saf.202322910881810.1016/j.ress.2022.108818
    [Google Scholar]
  24. HossainM.S. Cloud-supported cyber–physical localization framework for patients monitoring.IEEE Syst. J.201711111812710.1109/JSYST.2015.2470644
    [Google Scholar]
  25. MinW. BaoB.K. XuC. HossainM.S. Cross-platform multi-modal topic modeling for personalized inter-platform recommendation.IEEE Trans. Multimed.201517101787180110.1109/TMM.2015.2463226
    [Google Scholar]
  26. AbhishekaB. BiswasS.K. PurkayasthaB. A comprehensive review on breast cancer detection, classification and segmentation using deep learning.Arch. Comput. Methods Eng.20233085023505210.1007/s11831‑023‑09968‑z
    [Google Scholar]
  27. NasserM. YusofU.K. Deep learning based methods for breast cancer diagnosis: A systematic review and future direction.Diagnostics (Basel)202313116110.3390/diagnostics1301016136611453
    [Google Scholar]
  28. HumayunM. KhalilM.I. AlmuayqilS.N. JhanjhiN.Z. Framework for detecting breast cancer risk presence using deep learning.Electronics (Basel)202312240310.3390/electronics12020403
    [Google Scholar]
  29. pourJ.N. PourminaM.A. MoghaddasiM.N. GhalamkariB. An artificial intelligent network model to monitor the condition of a patient with a breast tumor based on fuzzy logic.Health Technol. (Berl.)202414111913910.1007/s12553‑023‑00800‑z
    [Google Scholar]
  30. HossainM.S. AminS.U. AlsulaimanM. MuhammadG. Applying deep learning for epilepsy seizure detection and brain mapping visualization.ACM Trans. Multimed. Comput. Commun. Appl.2019151s11710.1145/3241056
    [Google Scholar]
  31. HossainM.S. MuhammadG. Emotion-aware connected healthcare big data towards 5G.IEEE Internet Things J.2018542399240610.1109/JIOT.2017.2772959
    [Google Scholar]
  32. Cruz-RoaA. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks.2014Available From: https://ui.adsabs.harvard.edu/abs/2014SPIE.9041E. .03C/abstract
  33. JanseM.H.A. JanssenL.M. van der VeldenB.H.M. MomanM.R. Wolters-van der BenE.J.M. KockM.C.J.M. ViergeverM.A. van DiestP.J. GilhuijsK.G.A. Deep learning-based segmentation of locally advanced breast cancer on MRI in relation to residual cancer burden: A multi-institutional cohort study.J. Magn. Reson. Imaging20235861739174910.1002/jmri.2867936928988
    [Google Scholar]
  34. AbunasserB. AL-HiealyM.R. ZaqoutI. Abu-NaserS. Convolution neural network for breast cancer detection and classification using deep learning.Asian Pac. J. Cancer Prev.202324253154410.31557/APJCP.2023.24.2.53136853302
    [Google Scholar]
  35. DammuH. RenT. DuongT.Q. Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients.PLoS One2023181e028014810.1371/journal.pone.028014836607982
    [Google Scholar]
  36. ZizaanA. IdriA. ZerouaouiH. Applied deep learning architectures for breast cancer screening classification.ICAART2023361762410.5220/0011723700003393
    [Google Scholar]
  37. RazaA. UllahN. KhanJ.A. AssamM. GuzzoA. AljuaidH. DeepBreastCancerNet: A novel deep learning model for breast cancer detection using ultrasound images.Appl. Sci. (Basel)2023134208210.3390/app13042082
    [Google Scholar]
  38. LiX. YangL. JiaoX. Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer.Acad. Radiol.20233071281128710.1016/j.acra.2022.10.01536376154
    [Google Scholar]
  39. PourminaM.A. PourJ.N. MoghaddasiM.N. GhalamkariB. New model for intelligent breast cancer monitoring.Summary (Indianap. Ind.)202210.21203/rs.3.rs‑1570177/v1
    [Google Scholar]
  40. AminS.U. AlsulaimanM. MuhammadG. BencherifM.A. HossainM.S. Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification.IEEE Access20197189401895010.1109/ACCESS.2019.2895688
    [Google Scholar]
  41. TsochatzidisL. KoutlaP. CostaridouL. PratikakisI. Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses.Comput. Methods Programs Biomed.202120010591310.1016/j.cmpb.2020.10591333422854
    [Google Scholar]
  42. MalathiM. SinthiaP. FarzanaF. Aloy Anuja MaryG. Breast cancer detection using active contour and classification by deep belief network.Mater. Today Proc.2021452721272410.1016/j.matpr.2020.11.551
    [Google Scholar]
  43. AbdelhafizD. BiJ. AmmarR. YangC. NabaviS. Convolutional neural network for automated mass segmentation in mammography.BMC Bioinformatics202021S1Suppl. 119210.1186/s12859‑020‑3521‑y33297952
    [Google Scholar]
  44. MurtazaG. ShuibL. Abdul WahabA.W. MujtabaG. MujtabaG. NwekeH.F. Al-garadiM.A. ZulfiqarF. RazaG. AzmiN.A. Deep learning-based breast cancer classification through medical imaging modalities: State of the art and research challenges.Artif. Intell. Rev.20205331655172010.1007/s10462‑019‑09716‑5
    [Google Scholar]
  45. AlhamidM.F. RawashdehM. Al OsmanH. HossainM.S. El SaddikA. Towards context-sensitive collaborative media recommender system.Multimedia Tools Appl.20157424113991142810.1007/s11042‑014‑2236‑3
    [Google Scholar]
  46. QianS. ZhangT. XuC. HossainM.S. Social event classification via boosted multimodal supervised latent dirichlet allocation.ACM Trans. Multimed. Comput. Commun. Appl.201511212210.1145/2659521
    [Google Scholar]
  47. RoyA. ChakrabortyS. Support vector machine in structural reliability analysis: A review.Reliab. Eng. Syst. Saf.202323310912610.1016/j.ress.2023.109126
    [Google Scholar]
  48. KuraniA. DoshiP. VakhariaA. ShahM. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting.Annals of Data Science202310118320810.1007/s40745‑021‑00344‑x
    [Google Scholar]
  49. ZhengQ. YangM. ZhangQ. ZhangX. Fine-grained image classification based on the combination of artificial features and deep convolutional activation features.2017 IEEE/CIC International Conference on Communications in China (ICCC)22-24 October 2017Qingdao, China20171610.1109/ICCChina.2017.8330485
    [Google Scholar]
  50. ClementD. AguE. SuleimanM.A. ObayemiJ. AdeshinaS. SoboyejoW. Multi-class Breast cancer histopathological image classification using Multi-Scale Pooled Image Feature Representation (MPIFR) and one-versus-one support vector machines.Appl. Sci. (Basel)202213115610.3390/app13010156
    [Google Scholar]
  51. SahooB. PinnixZ. SimsS. ZelikovskyA. Identifying biomarkers using support vector machine to understand the racial disparity in triple-negative breast cancer.J. Comput. Biol.202330450251710.1089/cmb.2022.042236716280
    [Google Scholar]
  52. MaryS.R. PrasadR.M. SugunaR. A feature selection using improved dragonfly algorithm with support vector machine for breast cancer prediction.Comput. Methods Biomech. Biomed. Eng. Imaging Vis.20231152039204910.1080/21681163.2023.2212086
    [Google Scholar]
  53. GhantasalaG. P. RaparthiY. Al-RasheedA. AlqahtaniM. S. AbbasM. SoufieneB. O. A novel SVM kernel classifier technique using support vector machine for breast cancer classification.Preprint202310.21203/rs.3.rs‑2820379/v1
    [Google Scholar]
  54. WangY. LiuQ. YangY. sunJ. WangL. SongX. ZhaoX. Prognostic staging of esophageal cancer based on prognosis index and cuckoo search algorithm-support vector machine.Biomed. Signal Process. Control20237910420710.1016/j.bspc.2022.104207
    [Google Scholar]
  55. HaoX. FengZ. YangS. WangM. JiaoL. Automatic modulation classification via meta-learning.IEEE Internet Things J.20231014122761229210.1109/JIOT.2023.3247162
    [Google Scholar]
  56. WeiS. WangZ. SunZ. LiaoF. LiZ. ZouL. MiH. A family of automatic modulation classification models based on domain knowledge for various platforms.Electronics (Basel)2023128182010.3390/electronics12081820
    [Google Scholar]
  57. ZhengQ. TianX. YuZ. WangH. ElhanashiA. SaponaraS. DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization.Eng. Appl. Artif. Intell.202312210608210.1016/j.engappai.2023.106082
    [Google Scholar]
  58. LiP. PeiY. LiJ. A comprehensive survey on design and application of autoencoder in deep learning.Appl. Soft Comput.202313811017610.1016/j.asoc.2023.110176
    [Google Scholar]
  59. ZhengQ. ZhaoP. ZhangD. WangH. MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification.Int. J. Intell. Syst.202136127204723810.1002/int.22586
    [Google Scholar]
  60. ZhengQ. TianX. YuZ. JiangN. ElhanashiA. SaponaraS. YuR. Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: A case study of Qingdao, China.Sustain Cities Soc.20239210448610.1016/j.scs.2023.104486
    [Google Scholar]
  61. ShaikT. TaoX. HigginsN. LiL. GururajanR. ZhouX. AcharyaU.R. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2023132e148510.1002/widm.1485
    [Google Scholar]
  62. IqbalJ. Cortés JaimesD.C. MakineniP. SubramaniS. HemaidaS. ThuguT.R. ButtA.N. SiktoJ.T. KaurP. LakM.A. AugustineM. ShahzadR. ArainM. Reimagining healthcare: Unleashing the power of artificial intelligence in medicine.Cureus2023159e4465810.7759/cureus.4465837799217
    [Google Scholar]
  63. GuptaP. ChouhanA.V. WajeedM.A. TiwariS. BistA.S. PuriS.C. Prediction of health monitoring with deep learning using edge computing.Measure,: Sensors202325100604
    [Google Scholar]
  64. ChenM. CuiD. HaickH. TangN. Artificial intelligence-based medical sensors for healthcare system.Adv. Sensor Res.2023332300009
    [Google Scholar]
  65. KavithaR. Ant colony optimization-enabled CNN deep learning technique for accurate detection of cervical cancer.BioMed Res. Int.202320231742891
    [Google Scholar]
  66. Nitin GuptaS.B. YadavR. BovandF. TyagiP.K. Developing precision agriculture using data augmentation framework for automatic identification of castor insect pests.Front. Plant Sci.202314110194310.3389/fpls.2023.110194336895868
    [Google Scholar]
  67. GuoZ. YangC. WangD. LiuH. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations.Process Saf. Environ. Prot.202317360461310.1016/j.psep.2023.03.052
    [Google Scholar]
  68. ShakyaK.S. LaddiA. JaiswalM. Automated methods for sella turcica segmentation on cephalometric radiographic data using deep learning (CNN) techniques.Oral Radiol.202339224826510.1007/s11282‑022‑00629‑835737215
    [Google Scholar]
  69. ZhengD. HeX. JingJ. Overview of artificial intelligence in breast cancer medical imaging.J. Clin. Med.202312241910.3390/jcm1202041936675348
    [Google Scholar]
  70. GulloR.L. Artificial intelligence-enhanced breast MRI: Applications in breast cancer primary treatment response assessment and prediction.Investig. Radiology2024593230242
    [Google Scholar]
  71. RomeoV. MoyL. PinkerK. AI-Enhanced PET and MR Imaging for Patients with Breast Cancer.PET Clin.202318456757510.1016/j.cpet.2023.05.00237336693
    [Google Scholar]
  72. Hamedani-KarAzmoudehFarF. Tavakkoli-MoghaddamR. TajallyA.R. AriaS.S. Breast cancer classification by a new approach to assessing deep neural network-based uncertainty quantification methods.Biomed. Signal Process. Control20237910405710.1016/j.bspc.2022.104057
    [Google Scholar]
  73. ZhuZ. WangS.H. ZhangY.D. “A survey of convolutional neural network in breast cancer.Comput. Model. Eng. Sci.202313632127217210.32604/cmes.2023.02548437152661
    [Google Scholar]
  74. ZhengQ. YangM. TianX. WangX. WangD. Rethinking the role of activation functions in deep convolutional neural networks for image classification.Eng. Lett.2020281113
    [Google Scholar]
  75. SinghD. Breast cancer detection using convolution neural network.Breast Cancer2017412
    [Google Scholar]
  76. HossainM.S. MuhammadG. GuizaniN. Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics.IEEE Netw.202034412613210.1109/MNET.011.2000458
    [Google Scholar]
  77. AlhusseinM. MuhammadG. HossainM.S. AminS.U. Cognitive IoT-cloud integration for smart healthcare: Case study for epileptic seizure detection and monitoring.Mob. Netw. Appl.20182361624163510.1007/s11036‑018‑1113‑0
    [Google Scholar]
  78. CohenT. WellingM. Group equivariant convolutional networks.arXiv:1602.075762016
    [Google Scholar]
  79. HintonG.E. KrizhevskyA. WangS.D. Transforming auto-encoders.21st International Conference on Artificial Neural NetworksJune 14-17, 2011Espoo, Finland20114451
    [Google Scholar]
  80. OzaP. SharmaP. PatelS. AdedoyinF. BrunoA. Image augmentation techniques for mammogram analysis.J. Imaging20228514110.3390/jimaging805014135621905
    [Google Scholar]
  81. RomeroD. BekkersE. TomczakJ. HoogendoornM. Attentive group equivariant convolutional networks.arXiv:2002.038302020
    [Google Scholar]
  82. LafargeM.W. BekkersE.J. PluimJ.P.W. DuitsR. VetaM. Roto-translation equivariant convolutional networks: Application to histopathology image analysis.Med. Image Anal.20216810184910.1016/j.media.2020.10184933197715
    [Google Scholar]
  83. EstevesC. Theoretical aspects of group equivariant neural networks.arXiv:2004.051542020
    [Google Scholar]
  84. CarneiroG. NascimentoJ. BradleyA.P. Unregistered multiview mammogram analysis with pre-trained deep learning models.Int. Conf. Med. Image Comput. Comp.-Assist. Interven.2015935165266010.1007/978‑3‑319‑24574‑4_78
    [Google Scholar]
  85. CarneiroG. NascimentoJ. BradleyA.P. Automated analysis of unregistered multi-view mammograms with deep learning.IEEE Trans. Med. Imaging201736112355236510.1109/TMI.2017.275152328920897
    [Google Scholar]
  86. DhungelN. CarneiroG. BradleyA.P. Fully automated classification of mammograms using deep residual neural networks.2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)18-21 April 2017Melbourne, VIC, Australia201710.1109/ISBI.2017.7950526
    [Google Scholar]
  87. ChidesterB. ZhouT. DoM.N. MaJ. Rotation equivariant and invariant neural networks for microscopy image analysis.Bioinformatics20193514i530i53710.1093/bioinformatics/btz35331510662
    [Google Scholar]
  88. WuN. PhangJ. ParkJ. ShenY. HuangZ. ZorinM. JastrzebskiS. FevryT. KatsnelsonJ. KimE. WolfsonS. ParikhU. GaddamS. LinL.L.Y. HoK. WeinsteinJ.D. ReigB. GaoY. TothH. PysarenkoK. LewinA. LeeJ. AirolaK. MemaE. ChungS. HwangE. SamreenN. KimS.G. HeacockL. MoyL. ChoK. GerasK.J. Deep neural networks improve radiologists’ performance in breast cancer screening.IEEE Trans. Med. Imaging20203941184119410.1109/TMI.2019.294551431603772
    [Google Scholar]
  89. GerasK. High-resolution breast cancer screening with multi-view deep convolutional neural networks.arXiv:1703.070472019
    [Google Scholar]
  90. JanowczykA. Use case 6: Invasive ductal carcinoma (IDC) segmentation.2015Available From: http://www. andrewjanowczyk. com/use-case-6
  91. KumarP. SrivastavaS. MishraR.K. SaiY.P. End-to-end improved convolutional neural network model for breast cancer detection using mammographic data.J. Def. Model. Simul.: Appl., Methodol., Technol.202219337538410.1177/1548512920973268
    [Google Scholar]
  92. RamadanS.Z. Using convolutional neural network with cheat sheet and data augmentation to detect breast cancer in mammograms.Comput. Mathemat. Methods Med.202020209523404
    [Google Scholar]
  93. MajumdarS. PramanikP. SarkarR. Gamma function based ensemble of CNN models for breast cancer detection in histopathology images.Expert Syst. Appl.202321311902210.1016/j.eswa.2022.119022
    [Google Scholar]
  94. ZhangY. LiuY.L. NieK. ZhouJ. ChenZ. ChenJ.H. WangX. KimB. ParajuliR. MehtaR.S. WangM. SuM.Y. Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification.Acad. Radiol.202330Suppl. 2S161S17110.1016/j.acra.2022.12.03836631349
    [Google Scholar]
  95. MacitH.S. SabanciK. Benchmarking of ResNet models for breast cancer diagnosis using mammographic images.Int. J. Appl. Methods Electron. Comp.20231131110.58190/ijamec.2023.39
    [Google Scholar]
  96. YanJ. Study for performance of MobileNetV1 and MobileNetV2 based on breast cancer.Highlights . Sci., Eng. Technol.202339101410.54097/hset.v39i.6340
    [Google Scholar]
  97. MehmoodM. Machine learning enabled early detection of breast cancer by structural analysis of mammograms.Comput. Mater. Continua20216764165710.32604/cmc.2021.013774
    [Google Scholar]
  98. AlanaziS. A. Boosting breast cancer detection using convolutional neural network.J. Healthcare Eng.20212021552862210.1155/2021/5528622
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056290499240402102301
Loading
/content/journals/cmir/10.2174/0115734056290499240402102301
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test