Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

Accurate finding of Knee Osteoarthritis (KOA) from structural Magnetic Resonance Imaging (MRI) is a difficult task and is greatly subject to user variation. Furthermore, the identification of knee osteoarthritis (KOA) from MRI scans presents a challenge due to the limited information available. A novel methodology using an ensemble Deep Learning algorithm, combining EfficientNet-B3 and ResNext-101 architectures, aims to forecast KOA advancement, bridging the identified gap in clinical trials.

Objectives:

The study aims to develop a precise predictive model for knee osteoarthritis using advanced deep-learning architectures and structural MRI scan data. By utilizing an ensemble technique, the model's accuracy in predicting disease development is enhanced, surpassing the limitations of traditional biomarkers.

Methods:

The study used the Osteoarthritis Initiative dataset to develop an ensemble Deep Learning model that combined EfficientNet-B3 and ResNext-101 architectures. Techniques like cropping, gamma correction, and in-slice rotation were used to expand the dataset and improve the model's generalization capacity.

Results:

The Deep Learning model demonstrated 93% validation accuracy on the OAI dataset, accurately capturing subtle patterns of knee osteoarthritis progression. Augmentation approaches enhanced its resilience.

Conclusion:

Our ensemble Deep Learning approach, using ResNext-101 and EfficientNet-B3 architectures, accurately predicts knee osteoarthritis courses using structural MRI data, demonstrating the importance of data augmentation for improved predictive tools.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056289963240318040945
2024-01-01
2025-05-07
The full text of this item is not currently available.

References

  1. GoldringS.R. GoldringM.B. Clinical aspects, pathology and pathophysiology of osteoarthritis.J. Musculoskelet. Neuronal Interact.20066437637817185832
    [Google Scholar]
  2. GoldringM.B. GoldringS.R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.Ann N Y Acad Sci.2010119229029710.1111/j.1749‑6632.2009.05240.x
    [Google Scholar]
  3. CrossM. SmithE. HoyD. NolteS. AckermanI. FransenM. BridgettL. WilliamsS. GuilleminF. HillC.L. LaslettL.L. JonesG. CicuttiniF. OsborneR. VosT. BuchbinderR. WoolfA. MarchL. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study.Ann. Rheum. Dis.20147371323133010.1136/annrheumdis‑2013‑20476324553908
    [Google Scholar]
  4. Puig-JunoyJ. Ruiz ZamoraA. Socio-economic costs of osteoarthritis: A systematic review of cost-of-illness studies.Semin. Arthritis Rheum.201544553154110.1016/j.semarthrit.2014.10.01225511476
    [Google Scholar]
  5. RadinE.L. PaulI.L. TolkoffM.J. Subchondral bone changes in patients with early degenerative joint disease.Arthritis Rheum.197013440040510.1002/art.17801304064246869
    [Google Scholar]
  6. FinniläM.A.J. ThevenotJ. AhoO.M. TiituV. RautiainenJ. KauppinenS. NieminenM.T. PritzkerK. ValkealahtiM. LehenkariP. SaarakkalaS. Association between subchondral bone structure and osteoarthritis histopathological grade.J. Orthop. Res.201735478579210.1002/jor.2331227227565
    [Google Scholar]
  7. BucklandwrightC. Which radiographic techniques should we use for research and clinical practice?Best Pract. Res. Clin. Rheumatol.2006201395510.1016/j.berh.2005.08.00216483906
    [Google Scholar]
  8. RehmanA. SabaT. MujahidM. AlamriF.S. ElHakimN. Parkinson’s disease detection using hybrid lstm-gru deep learning model.Electronics20231213285610.3390/electronics12132856
    [Google Scholar]
  9. SureshaS. KidzińskiL. HalilajE. GoldG. E. DelpS. L. Automated staging of knee osteoarthritis severity using deep neural networks.Osteoarthr. Cartil201826SUPPLEMENT 1S44110.1016/j.joca.2018.02.845
    [Google Scholar]
  10. MacKayJ.W. KapoorG. DribanJ.B. LoG.H. McAlindonT.E. TomsA.P. McCaskieA.W. GilbertF.J. Association of subchondral bone texture on magnetic resonance imaging with radiographic knee osteoarthritis progression: Data from the osteoarthritis initiative bone ancillary study.Eur. Radiol.201828114687469510.1007/s00330‑018‑5444‑929721684
    [Google Scholar]
  11. MujahidM. RehmanA. AlamT. AlamriF.S. FatiS.M. SabaT. An efficient ensemble approach for Alzheimer’s disease detection using an adaptive synthetic technique and deep learning.Diagnostics20231315248910.3390/diagnostics1315248937568852
    [Google Scholar]
  12. KottiM. DuffellL.D. FaisalA.A. McGregorA.H. Detecting knee osteoarthritis and its discriminating parameters using random forests.Med. Eng. Phys.201743192910.1016/j.medengphy.2017.02.00428242181
    [Google Scholar]
  13. JanvierT. JennaneR. ToumiH. LespessaillesE. Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: Data from the osteoarthritis initiative.Osteoarthritis Cartilage.201725122047205410.1016/j.joca.2017.09.004
    [Google Scholar]
  14. AntonyJ. McGuinnessK. O’ConnorN.E. MoranK. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks.2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 04-08 December 2016, pp. 1195-1200.201610.1109/ICPR.2016.7899799
    [Google Scholar]
  15. RS. MujahidM. RustamF. MallampatiB. ChunduriV. de la Torre DíezI. AshrafI. Bidirectional encoder representations from transformers and deep learning model for analyzing smartphone-related tweets.PeerJ Comput. Sci.20239e143210.7717/peerj‑cs.1432
    [Google Scholar]
  16. AhmedS.M. MstafaR.J. Identifying severity grading of knee osteoarthritis from X-ray images using an efficient mixture of deep learning and machine learning models.Diagnostics20221212293910.3390/diagnostics1212293936552945
    [Google Scholar]
  17. ChenP. GaoL. ShiX. AllenK. YangL. Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss.Comput. Med. Imaging Graph.201975849210.1016/j.compmedimag.2019.06.00231238184
    [Google Scholar]
  18. AbadaR. AbubakarA.M. BilalM.T. An overview on deep leaning application of big data.MJBD20222022313510.58496/MJBD/2022/004
    [Google Scholar]
  19. JohnsonJ.M. KhoshgoftaarT.M. Survey on deep learning with class imbalance.J. Big Data2019612710.1186/s40537‑019‑0192‑5
    [Google Scholar]
  20. RagabM. AlbukhariA. AlyamiJ. MansourR.F. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images.Biology2022113439
    [Google Scholar]
  21. AlyamiJ. RehmanA. AlmutairiF. FayyazA.M. RoyS. SabaT. AlkhurimA. Tumor localization and classification from MRI of brain using deep convolution neural network and Salp swarm algorithm.Cognitive Computation2023111
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056289963240318040945
Loading
/content/journals/cmir/10.2174/0115734056289963240318040945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test