Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Coronary Heart Disease (CHD) is one of the most common types of cardiovascular disease, and Heart Failure (HF) is an important factor in its progression. We aimed to evaluate the diagnostic value and predictors of multiparametric Cardiac Magnetic Resonance (CMR) in CHD patients with HF.

Methods

The study retrospectively included 145 CHD patients who were classified into CHD (HF+) (n = 91) and CHD (HF–) (n = 54) groups according to whether HF occurred. CMR assessed LV function, myocardial strain and T1 mapping. Multivariate linear regression analyses were performed to identify predictors of LV dysfunction, myocardial fibrosis, and LV remodeling.

Results

CHD (HF+) group had impaired strain, with increased native T1, ECV, and LVM index. The impaired strain was associated with LVM index (p < 0.05), where native T1 and ECV were affected by log-transformed amino-terminal pro-B-type natriuretic peptide (NT-proBNP) levels. ROC analysis showed the combination of global circumferential strain (GCS), native T1, and LVM had a higher diagnostic value for the occurrence of HF in CHD patients.

Meanwhile, log-transformed NT-proBNP was an independent determinant of impaired strain, increased LVM index, native T1 and ECV.

Conclusion

HF has harmful effects on LV systolic function in patients with CHD. In CHD (HF+) group, LV dysfunction is strongly correlated with the degree of LV remodeling and myocardial fibrosis. The combination of the three is more valuable in diagnosing HF than conventional indicators.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056283569240227062332
2024-01-01
2025-01-06
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056283569.html?itemId=/content/journals/cmir/10.2174/0115734056283569240227062332&mimeType=html&fmt=ahah

References

  1. KnuutiJ. WijnsW. SarasteA. CapodannoD. BarbatoE. Funck-BrentanoC. PrescottE. StoreyR.F. DeatonC. CuissetT. AgewallS. DicksteinK. EdvardsenT. EscanedJ. GershB.J. SvitilP. GilardM. HasdaiD. HatalaR. MahfoudF. MasipJ. MunerettoC. ValgimigliM. AchenbachS. BaxJ.J. NeumannF-J. SechtemU. BanningA.P. BonarosN. BuenoH. BugiardiniR. ChieffoA. CreaF. CzernyM. DelgadoV. DendaleP. FlachskampfF.A. GohlkeH. GroveE.L. JamesS. KatritsisD. LandmesserU. LettinoM. MatterC.M. NathoeH. NiessnerA. PatronoC. PetronioA.S. PettersenS.E. PiccoloR. PiepoliM.F. PopescuB.A. RäberL. RichterD.J. RoffiM. RoithingerF.X. ShlyakhtoE. SibbingD. SilberS. SimpsonI.A. Sousa-UvaM. VardasP. WitkowskiA. ZamoranoJ.L. AchenbachS. AgewallS. BarbatoE. BaxJ.J. CapodannoD. CuissetT. DeatonC. DicksteinK. EdvardsenT. EscanedJ. Funck-BrentanoC. GershB.J. GilardM. HasdaiD. HatalaR. MahfoudF. MasipJ. MunerettoC. PrescottE. SarasteA. StoreyR.F. SvitilP. ValgimigliM. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. BenkheddaS. MetzlerB. SujayevaV. CosynsB. KusljugicZ. VelchevV. PanayiG. KalaP. Haahr-PedersenS.A. KabilH. AinlaT. KaukonenT. CaylaG. PagavaZ. WoehrleJ. KanakakisJ. TóthK. GudnasonT. PeaceA. AronsonD. RiccioC. EleziS. MirrakhimovE. HansoneS. SarkisA. BabarskieneR. BeisselJ. MaempelA.J.C. RevencoV. de GroothG.J. PejkovH. JuliebøV. LipiecP. SantosJ. ChioncelO. DuplyakovD. BertelliL. DikicA.D. StudenčanM. BuncM. AlfonsoF. BäckM. ZellwegerM. AddadF. YildirirA. SirenkoY. ClappB. ESC Scientific Document Group 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.Eur. Heart J.202041340747710.1093/eurheartj/ehz42531504439
    [Google Scholar]
  2. LalaA. DesaiA.S. The role of coronary artery disease in heart failure.Heart Fail. Clin.201410235336510.1016/j.hfc.2013.10.00224656111
    [Google Scholar]
  3. GheorghiadeM. SopkoG. De LucaL. VelazquezE.J. ParkerJ.D. BinkleyP.F. SadowskiZ. GolbaK.S. PriorD.L. RouleauJ.L. BonowR.O. Navigating the crossroads of coronary artery disease and heart failure.Circulation2006114111202121310.1161/CIRCULATIONAHA.106.62319916966596
    [Google Scholar]
  4. GroenewegenA. RuttenF.H. MosterdA. HoesA.W. Epidemiology of heart failure.Eur. J. Heart Fail.20202281342135610.1002/ejhf.185832483830
    [Google Scholar]
  5. DemirkiranA. EveraarsH. AmierR.P. BeijninkC. BomM.J. GötteM.J.W. van LoonR.B. SelderJ.L. van RossumA.C. NijveldtR. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury.Eur. Heart J. Cardiovasc. Imaging201920772373410.1093/ehjci/jez09431131401
    [Google Scholar]
  6. IbanezB. AletrasA.H. AraiA.E. ArhedenH. BaxJ. BerryC. Bucciarelli-DucciC. CroisilleP. Dall’ArmellinaE. DharmakumarR. EitelI. Fernández-JiménezR. FriedrichM.G. García-DoradoD. HausenloyD.J. KimR.J. KozerkeS. KramerC.M. SalernoM. Sánchez-GonzálezJ. SanzJ. FusterV. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials.J. Am. Coll. Cardiol.201974223825610.1016/j.jacc.2019.05.02431296297
    [Google Scholar]
  7. KorosoglouG. GiuscaS. MontenbruckM. PatelA.R. LapinskasT. GötzeC. ZieschangV. Al-TabatabaeeS. PieskeB. FlorianA. ErleyJ. KatusH.A. KelleS. SteenH. Fast strain-encoded cardiac magnetic resonance for diagnostic classification and risk stratification of heart failure patients.JACC Cardiovasc. Imaging20211461177118810.1016/j.jcmg.2020.10.02433454266
    [Google Scholar]
  8. SenoA. AntiochosP. LichtenfeldH. RickersE. QamarI. GeY. BlanksteinR. SteignerM. AghayevA. Jerosch-HeroldM. KwongR.Y. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and no clinical evidence of coronary artery disease.J. Am. Heart Assoc.2022112e02098110.1161/JAHA.121.02098135023344
    [Google Scholar]
  9. WarnicaW. Al-ArnawootA. StanimirovicA. ThavendiranathanP. WaldR.M. PakkalM. KarurG.R. WinterspergerB.J. RacV. HannemanK. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy.Radiology2022305231932610.1148/radiol.22006735787201
    [Google Scholar]
  10. KammerlanderA.A. DonàC. NitscheC. KoschutnikM. SchönbauerR. DucaF. Zotter-TufaroC. BinderC. AschauerS. BeitzkeD. LoeweC. HengstenbergC. BondermanD. MascherbauerJ. Feature tracking of global longitudinal strain by using cardiovascular MRI improves risk stratification in heart failure with preserved ejection fraction.Radiology2020296229029810.1148/radiol.202020019532484413
    [Google Scholar]
  11. GerberB.L. RousseauM.F. AhnS.A. le Polain de WarouxJ.B. PouleurA.C. PhlipsT. VancraeynestD. PasquetA. VanoverscheldeJ.L.J. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: Impact of revascularization therapy.J. Am. Coll. Cardiol.201259982583510.1016/j.jacc.2011.09.07322361403
    [Google Scholar]
  12. HaghbayanH. LougheedN. DevaD.P. ChanK.K.W. LimaJ.A.C. YanA.T. Peri-infarct quantification by cardiac magnetic resonance to predict outcomes in ischemic cardiomyopathy.Circ. Cardiovasc. Imaging20191211e00915610.1161/CIRCIMAGING.119.00915631735067
    [Google Scholar]
  13. FischerK. GuenschD.P. JungB. KingI. von Tengg-KobligkH. GiannettiN. EberleB. FriedrichM.G. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction.Circ. Heart Fail.2022154e00890310.1161/CIRCHEARTFAILURE.121.00890335038887
    [Google Scholar]
  14. McDonaghT.A. MetraM. AdamoM. GardnerR.S. BaumbachA. BöhmM. BurriH. ButlerJ. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. Francesco PiepoliM. PriceS. RosanoG.M.C. RuschitzkaF. Kathrine SkibelundA. de BoerR.A. Christian SchulzeP. AbdelhamidM. AboyansV. AdamopoulosS. AnkerS.D. ArbeloE. AsteggianoR. BauersachsJ. Bayes-GenisA. BorgerM.A. BudtsW. CikesM. DammanK. DelgadoV. DendaleP. DilaverisP. DrexelH. EzekowitzJ. FalkV. FauchierL. FilippatosG. FraserA. FreyN. GaleC.P. GustafssonF. HarrisJ. IungB. JanssensS. JessupM. KonradiA. KotechaD. LambrinouE. LancellottiP. LandmesserU. LeclercqC. LewisB.S. LeyvaF. LinhartA. LøchenM-L. LundL.H. ManciniD. MasipJ. MilicicD. MuellerC. NefH. NielsenJ-C. NeubeckL. NoutsiasM. PetersenS.E. Sonia PetronioA. PonikowskiP. PrescottE. RakishevaA. RichterD.J. SchlyakhtoE. SeferovicP. SenniM. SitgesM. Sousa-UvaM. TocchettiC.G. TouyzR.M. TschoepeC. WaltenbergerJ. AdamoM. BaumbachA. BöhmM. BurriH. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GardnerR.S. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. PiepoliM.F. PriceS. RosanoG.M.C. RuschitzkaF. SkibelundA.K. ESC Scientific Document Group 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202142363599372610.1093/eurheartj/ehab36834447992
    [Google Scholar]
  15. KehrE. SonoM. ChughS.S. Jerosch-HeroldM. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro.Int. J. Cardiovasc. Imaging2007241616810.1007/s10554‑007‑9223‑y17429755
    [Google Scholar]
  16. ArsalanM. SquiersJ.J. FilardoG. PollockB. DiMaioJ.M. ParvaB. GopalA. MahoneyA.C. BrownD.L. MackM.J. GrayburnP.A. Effect of elliptical LV outflow tract geometry on classification of aortic stenosis in a multidisciplinary heart team setting.JACC Cardiovasc. Imaging201710111401140210.1016/j.jcmg.2016.10.00928109922
    [Google Scholar]
  17. CicchettiD.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology.Psychol. Assess.19946428429010.1037/1040‑3590.6.4.284
    [Google Scholar]
  18. ParlavecchioA. VettaG. CaminitiR. AjelloM. MagnocavalloM. VettaF. FotiR. CreaP. MicariA. CarerjS. Della RoccaD.G. Di BellaG. ZitoC. Which is the best Myocardial Work index for the prediction of coronary artery disease? A data meta‐analysis.Echocardiography202340321722610.1111/echo.1553736748264
    [Google Scholar]
  19. OharaT. LittleW.C. Evolving focus on diastolic dysfunction in patients with coronary artery disease.Curr. Opin. Cardiol.201025661362110.1097/HCO.0b013e32833f043820827179
    [Google Scholar]
  20. MinczykowskiA. ZwanzigM. DziarmagaM. RutkowskaA. BalińskiM. KrauzeT. GuzikP. WykrętowiczA. First-phase left ventricular ejection fraction as an early sign of left ventricular dysfunction in patients with stable coronary artery disease.J. Clin. Med.202312386810.3390/jcm1203086836769516
    [Google Scholar]
  21. Biering-SørensenT. SolomonS.D. Assessing contractile function when ejection fraction is normal.Circ. Cardiovasc. Imaging2015811e00418110.1161/CIRCIMAGING.115.00418126546484
    [Google Scholar]
  22. HeJ. YangW. WuW. LiS. YinG. ZhuangB. XuJ. SunX. ZhouD. WeiB. SirajuddinA. TengZ. ZhaoS. KureshiF. LuM. Early diastolic longitudinal strain rate at MRI and outcomes in heart failure with preserved ejection fraction.Radiology2021301358259210.1148/radiol.202121018834519577
    [Google Scholar]
  23. RomanoS. JuddR.M. KimR.J. KimH.W. KlemI. HeitnerJ.F. ShahD.J. JueJ. WhiteB.E. IndorkarR. ShenoyC. Farzaneh-FarA. Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement.JACC Cardiovasc. Imaging201811101419142910.1016/j.jcmg.2017.10.02429361479
    [Google Scholar]
  24. MasseraD. HuM. DelaneyJ.A. BartzT.M. BachM.E. DvorakS.J. DeFilippiC.R. PsatyB.M. GottdienerJ.S. KizerJ.R. ShahS.J. Adverse cardiac mechanics and incident coronary heart disease in the Cardiovascular Health Study.Heart2022108752953510.1136/heartjnl‑2021‑31929634257074
    [Google Scholar]
  25. GoedemansL. AbouR. HoogslagG.E. Ajmone MarsanN. DelgadoV. BaxJ.J. Left ventricular global longitudinal strain and long-term prognosis in patients with chronic obstructive pulmonary disease after acute myocardial infarction.Eur. Heart J. Cardiovasc. Imaging2019201566510.1093/ehjci/jey02829529225
    [Google Scholar]
  26. MedvedofskyD. MaffessantiF. WeinertL. TehraniD.M. NarangA. AddetiaK. MedirattaA. BesserS.A. MaorE. PatelA.R. SpencerK.T. Mor-AviV. LangR.M. 2D and 3D echocardiography-derived indices of left ventricular function and shape.JACC Cardiovasc. Imaging201811111569157910.1016/j.jcmg.2017.08.02329153577
    [Google Scholar]
  27. RomanoS. JuddR.M. KimR.J. HeitnerJ.F. ShahD.J. ShenoyC. EvansK. RomerB. SalazarP. Farzaneh-FarA. Feature-tracking global longitudinal strain predicts mortality in patients with preserved ejection fraction.JACC Cardiovasc. Imaging202013494094710.1016/j.jcmg.2019.10.00431727563
    [Google Scholar]
  28. KrittayaphongR. BoonyasirinantT. SaiviroonpornP. ThanapiboonpolP. NakyenS. RuksakulK. UdompunturakS. Prognostic significance of left ventricular mass by magnetic resonance imaging study in patients with known or suspected coronary artery disease.J. Hypertens.200927112249225610.1097/HJH.0b013e3283309ac419829147
    [Google Scholar]
  29. ClausP. OmarA.M.S. PedrizzettiG. SenguptaP.P. NagelE. Tissue tracking technology for assessing cardiac mechanics.JACC Cardiovasc. Imaging20158121444146010.1016/j.jcmg.2015.11.00126699113
    [Google Scholar]
  30. WangJ. LiY. GuoY.K. HuangS. ShiR. YanW.F. QianW.L. HeG.X. YangZ.G. The adverse impact of coronary artery disease on left ventricle systolic and diastolic function in patients with type 2 diabetes mellitus: a 3.0T CMR study.Cardiovasc. Diabetol.20222113010.1186/s12933‑022‑01467‑y35193565
    [Google Scholar]
  31. DonekalS. VenkateshB.A. LiuY.C. LiuC.Y. YoneyamaK. WuC.O. NacifM. GomesA.S. HundleyW.G. BluemkeD.A. LimaJ.A.C. Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: The Multi-Ethnic Study of Atherosclerosis (MESA) study.Circ. Cardiovasc. Imaging20147229230210.1161/CIRCIMAGING.113.00107324550436
    [Google Scholar]
  32. FerreiraV.M. T1 mapping of the remote myocardium.J. Am. Coll. Cardiol.201871777978110.1016/j.jacc.2017.12.02129447740
    [Google Scholar]
  33. KammerlanderA.A. MarzlufB.A. Zotter-TufaroC. AschauerS. DucaF. BachmannA. KnechtelsdorferK. WiesingerM. PfaffenbergerS. GreiserA. LangI.M. BondermanD. MascherbauerJ. T1 mapping by CMR imaging.JACC Cardiovasc. Imaging201691142310.1016/j.jcmg.2015.11.00226684970
    [Google Scholar]
  34. BrodovY. MatezkyS. KonenE. Elevated native T1 values in the remote myocardium supplied by obstructive non-infarct related coronary arteries in post-STEMI CMR.Cardiology20221482106113
    [Google Scholar]
  35. NakamoriS. DohiK. IshidaM. GotoY. Imanaka-YoshidaK. OmoriT. GotoI. KumagaiN. FujimotoN. IchikawaY. KitagawaK. YamadaN. SakumaH. ItoM. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy.JACC Cardiovasc. Imaging2018111485910.1016/j.jcmg.2017.04.00628624408
    [Google Scholar]
  36. ChenR. WangJ. DuZ. JuanY.H. ChanC.W.S. FeiH. XieJ. WuW. ZhuY. LiL. MengJ. WuS. LiangC. YuZ. LiuH. The comparison of short-term prognostic value of T1 mapping with feature tracking by cardiovascular magnetic resonance in patients with severe dilated cardiomyopathy.Int. J. Cardiovasc. Imaging201935117117810.1007/s10554‑018‑1444‑830132161
    [Google Scholar]
  37. Ambale-VenkateshB. LiuC.Y. LiuY.C. DonekalS. OhyamaY. SharmaR.K. WuC.O. PostW.S. HundleyG.W. BluemkeD.A. LimaJ.A.C. Association of myocardial fibrosis and cardiovascular events: the multi-ethnic study of atherosclerosis.Eur. Heart J. Cardiovasc. Imaging201920216817610.1093/ehjci/jey14030325426
    [Google Scholar]
  38. WongT.C. PiehlerK. MeierC.G. TestaS.M. KlockA.M. AneiziA.A. ShakesprereJ. KellmanP. ShroffS.G. SchwartzmanD.S. MulukutlaS.R. SimonM.A. SchelbertE.B. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality.Circulation2012126101206121610.1161/CIRCULATIONAHA.111.08940922851543
    [Google Scholar]
  39. MessroghliD.R. MoonJ.C. FerreiraV.M. Grosse-WortmannL. HeT. KellmanP. MascherbauerJ. NezafatR. SalernoM. SchelbertE.B. TaylorA.J. ThompsonR. UganderM. van HeeswijkR.B. FriedrichM.G. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).J. Cardiovasc. Magn. Reson.20171917510.1186/s12968‑017‑0389‑828992817
    [Google Scholar]
  40. ReinstadlerS.J. StiermaierT. LiebetrauJ. FuernauG. EitelC. de WahaS. DeschS. ReilJ.C. PössJ. MetzlerB. LückeC. GutberletM. SchulerG. ThieleH. EitelI. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction.JACC Cardiovasc. Imaging201811341141910.1016/j.jcmg.2017.03.01528624398
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056283569240227062332
Loading
/content/journals/cmir/10.2174/0115734056283569240227062332
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test