Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The human skeletal system relies heavily on the integrity of bones, which provide structural support and safeguard vital organs. Accurate detection is paramount for effective diagnosis. Conventional methods for identifying fractures manually are not only time-consuming but also susceptible to errors.

Methods

The proposed methodology hinges on a patch antenna operating at 2.4 GHz and a bone phantom housing a simulated fracture, where the antenna is scanned. The collected signals are then processed with Delay-and-Sum (DAS), and Delay-Multiply-and-Sum (DMAS) reconstruction algorithms. The resulting images offer visual insights into the location of fractures.

Results

Through experimentation, the efficacy of the images varies considerably in terms of their capacity for noise and artifact suppression. While DAS exhibits reasonable effectiveness, it suppresses noise and artifacts comprehensively. In contrast, DMAS offers clearer and more precise images of bone fractures.

Conclusion

In summary, the research introduces a cost-effective and non-invasive strategy for detecting bone fractures. By involving a patch antenna at 2.4 GHz, along with image reconstruction algorithms like DMAS and DAS, one can effectively visualize the location of bone fractures. The experimental results highlight the superiority of DMAS over DAS in terms of contrast resolution, making it a highly promising avenue for fracture detection.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056282184240112095915
2024-01-01
2025-07-03
The full text of this item is not currently available.

References

  1. YadavD.P. RathorS. Bone fracture detection and classification using deep learning approach.2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)28-29 February 2020Mathura, India202010.1109/PARC49193.2020.236611
    [Google Scholar]
  2. KarimunnisaS. SavarapuP.R. MadupuR.K. BashaC.Z. NeelakanteswaraP. Detection of bone fractures automatically with enhanced performance with better combination of filtering and neural networks.2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA)Coimbatore, India202018919310.1109/ICIRCA48905.2020.9183085
    [Google Scholar]
  3. KenwrightJ. RichardsonJ.B. CunninghamJ.L. WhiteS.H. GoodshipA.E. AdamsM.A. MagnussenP.A. NewmanJ.H. Axial movement and tibial fractures. A controlled randomised trial of treatment.J. Bone Joint Surg. Br.199173-B465465910.1302/0301‑620X.73B4.20716542071654
    [Google Scholar]
  4. PhamDL Two-photon excitation fluorescence microscopy.Annu. Rev. Biomed. Eng.2000239942910.1146/annurev.bioeng.2.1.315
    [Google Scholar]
  5. NahidAA. KhanT.M. KongY. Hardware implementation of bone fracture detector using fuzzy method along with local normalization technique.Annals of Data Science20174453354610.1007/s40745‑017‑0118‑z
    [Google Scholar]
  6. MercuriM. ShethT. NatarajanM.K. Radiation exposure from medical imaging: A silent harm?CMAJ2011183441341410.1503/cmaj.10188521324851
    [Google Scholar]
  7. NathanaelE.J. WyawahareM.V. Survey of bone fracture detection techniques.Int. J. Comput. Appl.20137117313410.5120/12452‑9342
    [Google Scholar]
  8. MatsudaM. High-dose proton beam therapy versus conventional fractionated radiation therapy for newly diagnosed glioblastoma: A propensity score matching analysis.Radiat. Oncol.20231813810.1186/s13014‑023‑02236‑1
    [Google Scholar]
  9. GriffetJ. LerouxJ. BoudjourafN. Abou-DaherA. el HayekT. KarunanithiS. Elastic stable intramedullary nailing of tibial shaft fractures in children.J. Child. Orthop.20115429730410.1007/s11832‑011‑0343‑5
    [Google Scholar]
  10. LarsenL.E. JacobiJ.H. Microwave scattering parameter imagery of an isolated canine kidney.Med. Phys.19796539440310.1118/1.594595492073
    [Google Scholar]
  11. LazebnikM. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol200752206093611510.1088/0031‑9155/52/20/002
    [Google Scholar]
  12. QaddoumiN. El-hagA.H. Al HosaniM. MansouriI.A. GhufliH.A. Detecting defects in outdoor non-ceramic insulators using near-field microwave non-destructive testing.IEEE Trans. Dielectr. Electr. Insul.201017240240710.1109/TDEI.2010.5448094
    [Google Scholar]
  13. ZarifiM.H. DeifS. AbdolrazzaghiM. ChenB. RamsawakD. AmyotteM. VahabisaniN. HashishoZ. ChenW. DaneshmandM. A microwave ring resonator sensor for early detection of breaches in pipeline coatings.IEEE Trans. Ind. Electron.20186521626163510.1109/TIE.2017.2733449
    [Google Scholar]
  14. SubbarajS. RamalingamV.S. KanagasabaiM. SundarsinghE.F. SelvamY.P. KingsleyS. Electromagnetic nondestructive material characterization of dielectrics using ebg based planar transmission line sensor.IEEE Sens. J.201616197081708710.1109/JSEN.2016.2591320
    [Google Scholar]
  15. StaderiniE.M. UWB radars in medicine.IEEE Aerosp. Electron. Syst. Mag.2002171131810.1109/62.978359
    [Google Scholar]
  16. RamalingamS. KanagasabaiM. SundarsinghE.F. A compact microwave device for fracture diagnosis of the human tibia.IEEE Trans. Compon. Packag. Manuf. Technol.201994661668
    [Google Scholar]
  17. LinX. ChenY. GongZ. SeetB. HuangL. LuY. Ultrawideband textile antenna for wearable microwave medical imaging applications.IEEE Trans. Antennas Propag.20206864238424910.1109/TAP.2020.2970072
    [Google Scholar]
  18. BoologamA.V. KrishnanK. PalaniswamyS.K. KumarS. BhowmikS. SharmaN. VaishD. ChatterjeeS. Onthe design and development of planar monopole antenna forbone crack/void detection.Int. J. Antennas Propag.2022202211210.1155/2022/4663488
    [Google Scholar]
  19. LinM.C. HuD. MarmorM. HerfatS.T. BahneyC.S. MaharbizM.M. Smart bone plates can monitor fracture healing.Sci. Rep.201991212210.1038/s41598‑018‑37784‑030765721
    [Google Scholar]
  20. RuvioG. CuccaroA. SolimeneR. BrancaccioA. BasileB. AmmannM.J. Microwave bone imaging: A preliminary scanning system for proof‐of‐concept.Healthc. Technol. Lett.20163321822110.1049/htl.2016.000327733930
    [Google Scholar]
  21. KhalesiB. SohaniB. GhavamiN. GhavamiM. DudleyS. TiberiG. A phantom investigation to quantify huygens principle based microwave imaging for bone lesion detection.Electronics2019812150510.3390/electronics8121505
    [Google Scholar]
  22. LalithaK. ManjulaJ. Non-invasive microwave head imaging to detect tumors and to estimate their size and location.Phys. Med.20221310004710.1016/j.phmed.2022.100047
    [Google Scholar]
  23. ChenY. XiaR. YangK. ZouK. DGCA: high resolution image inpainting via DR-GAN and contextual attention.Multimedia Tools Appl.20238230477514777110.1007/s11042‑023‑15313‑0
    [Google Scholar]
  24. ChenY. XiaR. YangK. ZouK. DARGS: Image inpainting algorithm via deep attention residuals group and semantics.Journal of King Saud University - Computer and Information Sciences202335610156710.1016/j.jksuci.2023.101567
    [Google Scholar]
  25. AdegokeM. Design of multiband microstrip antenna for mobile wireless communication.Proceedings of the 2015 International Conference on Management, Education, Information and Control201510.2991/meici‑15.2015.29
    [Google Scholar]
  26. AsokanV. ThilagamS. KumarK.V. Design and analysis of microstrip patch antenna for 2.4GHz ISM band and WLAN application.2015 2nd International Conference on Electronics and Communication Systems (ICECS)26-27 February 2015Coimbatore, India201510.1109/ECS.2015.7124756
    [Google Scholar]
  27. KarthickM. Design of 2.4GHz patch antennae for WLAN applications.2015 IEEE Seventh National Conference on Computing, Communication and Information Systems (NCCCIS)20151410.1109/NCCCIS.2015.7295902
    [Google Scholar]
  28. DamajA.W. El MisilmaniH.M. ChahineS.A. Implantable antennas for biomedical applications: An overview on alternative antenna design methods and challenges.2018 International Conference on High Performance Computing & Simulation (HPCS)Orleans, France2018313710.1109/HPCS.2018.00019
    [Google Scholar]
  29. SheelaJ.J.J. LogeshwaranM. KumarK.U. VamsiM. KumarN.C. Design of ultra-wideband of rectangular shaped emoji designed microstrip patch antenna of 4.5GHz for military applications.2022 3rd International Conference on Smart Electronics and Communication (ICOSEC)20-22 October 2022Trichy, India202210.1109/ICOSEC54921.2022.9951893
    [Google Scholar]
  30. FaisalM. GafurA. RashidS.Z. ShawonM.O. HasanK.I. BillahM.B. Return loss and gain improvement for 5G wireless communication based on single band microstrip square patch antenna.2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)03-05 May 2019Dhaka, Bangladesh201910.1109/ICASERT.2019.8934474
    [Google Scholar]
  31. UpadhyayD. DwivediR.P. Antenna miniaturization techniques for wireless applications.2014 Eleventh International Conference on Wireless and Optical Communications Networks (WOCN)Vijayawada, India20141410.1109/WOCN.2014.6923083
    [Google Scholar]
  32. JyosthnaR. SunnyR.A. JugaleA.A. AhmedM.R. Microstrip patch antenna design for space applications.2020 International Conference on Communication and Signal Processing (ICCSP)Chennai, India202040641010.1109/ICCSP48568.2020.9182250
    [Google Scholar]
  33. Mohamed JunaidK.A. SheelaJ.J.J. LogeshwaranM. Design and analysis of novel face shaped microstrip array antenna of UWB for early breast tumor detection.2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)202210.1109/I‑SMAC55078.2022.9987380
    [Google Scholar]
  34. MooreR. Effects of a surrounding conducting medium on antenna analysis.IRE Trans. Antennas Propag.196311321622510.1109/TAP.1963.1138043
    [Google Scholar]
  35. SimanjuntakA.B. Preliminary design of automatic antenna radiation pattern measurement system for antenna and propagation laboratory course.Proceedings of the 5th UPI International Conference on Technical and Vocational Education and Training (ICTVET 2018)201910.2991/ictvet‑18.2019.19
    [Google Scholar]
  36. UllahM. IslamM. AlamT. AshrafF. Paper-based flexible antenna for wearable telemedicine applications at 2.4 GHz ISM band.Sensors20181812421410.3390/s1812421430513719
    [Google Scholar]
  37. JoinesW.T. JirtleR.L. RafalM.D. SchaeferD.J. Microwave power absorption differences between normal and malignant tissue.Int. J. Radiat. Oncol. Biol. Phys.19806668168710.1016/0360‑3016(80)90223‑07451273
    [Google Scholar]
  38. AminB. ElahiM.A. ShahzadA. ParleE. McNamaraL. O’HalloranM. An insight into bone dielectric properties variation: A foundation for electromagnetic medical devices.2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)10-13 September 2018Split, Croatia201810.23919/EMF‑MED.2018.8526050
    [Google Scholar]
  39. AliU. Design and SAR analysis of wearable antenna on various parts of human body, using conventional and artificial ground planes.J. Electr. Eng. Technol. 201712131732810.5370/JEET.2017.12.1.317
    [Google Scholar]
  40. Balarami ReddyB.N. Sandeep KumarP. Rama RaoT. TiwariN. BalacharyM. Design and analysis of wideband monopole antennas for flexible/wearable wireless device applications.Prog. Electromagn. Res. M Pier M20176216717410.2528/PIERM17092107
    [Google Scholar]
  41. SinghN A snapshot of patients' awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic.Radiography20172329410210.1016/j.radi.2016.10.011
    [Google Scholar]
  42. LinE.C. Radiation risk from medical imaging.Mayo Clin. Proc.201085121142114610.4065/mcp.2010.026021123642
    [Google Scholar]
  43. DavidJ.M. SachinJ. JohnB.K. SharadG. Diagnostic medical imaging in pediatric patients and subsequent cancer risk.Acad Radiol201724111456146210.1016/j.acra.2017.05.009
    [Google Scholar]
  44. LiM.L. ZhangH.F. MaslovK. StoicaG. WangL.V. Improved in vivo photoacoustic microscopy based on a virtual-detector concept.Opt. Lett.200631447447610.1364/OL.31.00047416496891
    [Google Scholar]
  45. MatroneG. SavoiaA.S. CalianoG. MagenesG. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.IEEE Trans. Med. Imaging201534494094910.1109/TMI.2014.237123525420256
    [Google Scholar]
  46. JeonS. ParkE.Y. ChoiW. ManaguliR. LeeK. KimC. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans.Photoacoustics20191510013610.1016/j.pacs.2019.10013631467842
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056282184240112095915
Loading
/content/journals/cmir/10.2174/0115734056282184240112095915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test