Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Positron Emission Tomography (PET) scan stands as a valuable diagnostic tool in nuclear medicine, enabling the observation of metabolic and physiological changes at a molecular level. However, PET scans have a number of drawbacks, such as poor spatial resolution, noisy images, scattered radiation, artifacts, and radiation exposure. These challenges demonstrate the need for optimization in image processing techniques.

Objectives

Our objective is to identify the evolving trends and impacts of publication in this field, as well as the most productive and influential countries, institutions, authors, themes, and articles.

Methods

A bibliometric study was conducted using a comprehensive query string such as “positron emission tomography” AND “image processing” AND optimization to retrieve 1,783 publications from 1981 to 2022 found in the Scopus database related to this field of study.

Results

The findings revealed that the most influential country, institution, and authors are from the USA, and the most prevalent theme is TOF PET image reconstruction.

Conclusion

The increasing trend in publication in the field of optimization of image processing in PET scans would address the challenges in PET scan by reducing radiation exposure, faster scanning speed, as well as enhancing lesion identification.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056282004240403042345
2024-04-09
2025-01-06
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056282004.html?itemId=/content/journals/cmir/10.2174/0115734056282004240403042345&mimeType=html&fmt=ahah

References

  1. ZhangL. ZhangY. LiuS. ZhaoY. ChenL. The use of positron emission tomography in thyroid cancer: A bibliometric analysis.Gland Surg.202211121874188610.21037/gs‑22‑62636654947
    [Google Scholar]
  2. BaekS. YoonD.Y. MinK.J. LimK.J. SeoY.L. YunE.J. Characteristics and trends of research on positron emission tomography: A bibliometric analysis, 2002–2012.Ann. Nucl. Med.201428545546210.1007/s12149‑014‑0836‑724619790
    [Google Scholar]
  3. PranckutėR. Web of science (WoS) and scopus: The titans of bibliographic information in today’s academic world.Publications, MDPI20219115910.3390/publications9010012
    [Google Scholar]
  4. MukherjeeD. LimW.M. KumarS. DonthuN. Guidelines for advancing theory and practice through bibliometric research.J. Bus. Res.202214810111510.1016/j.jbusres.2022.04.042
    [Google Scholar]
  5. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑320585380
    [Google Scholar]
  6. van EckJ.N. WaltmanL. VOSviewer manual.Available from: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.19.pdf 2023
  7. AideN. LasnonC. DesmontsC. ArmstrongI. S. WalkerM. D. McGowanD. R. Advances in PET/CT technology: An update.Semin Nucl Med202252328630110.1053/j.semnuclmed.2021.10.005
    [Google Scholar]
  8. SchaartD.R. Physics and technology of time-of-flight PET detectors.Phys. Med. Biol.202166909TR0110.1088/1361‑6560/abee5633711831
    [Google Scholar]
  9. WalrandS.M.H.F.J. Update on novel trends in PET/CT technology and its clinical applications.Br J Radiol.201891108120160534
    [Google Scholar]
  10. TurkingtonT.G. Introduction to PET instrumentation.J. Nucl. Med. Technol.200129141111283211
    [Google Scholar]
  11. ParkE.A. Radiation dosimetry in 18F-FDG PET/CT.Clinical PET and PET/CT.New York, NYSpringer New York201312112710.1007/978‑1‑4419‑0802‑5_10
    [Google Scholar]
  12. TowsonJ.E.C. EberlS. Radiation protection and dosimetry in PET and PET/CT.Positron Emission Tomography DelbekeD. BaileyD.L. TownsendD.W. MaiseyM.N. SpringerLondon200610.1007/1‑84628‑187‑3_4
    [Google Scholar]
  13. SalvatoriM. RizzoA. RoveraG. IndovinaL. SchillaciO. Radiation dose in nuclear medicine: The hybrid imaging.Radiol. Med.2019124876877610.1007/s11547‑019‑00989‑y30771217
    [Google Scholar]
  14. AleneziA. SolimanK. Trends in radiation protection of positron emission tomography/computed tomography imaging.Ann. ICRP201544S125927910.1177/014664531455167125915553
    [Google Scholar]
  15. Leide-SvegbornS. Radiation exposure of patients and personnel from a PET/CT procedure with 18F-FDG.Radiat. Prot. Dosimetry20101391-320821310.1093/rpd/ncq02620167792
    [Google Scholar]
  16. XingY. QiaoW. WangT. WangY. LiC. LvY. XiC. LiaoS. QianZ. ZhaoJ. Deep learning-assisted PET imaging achieves fast scan/low-dose examination.EJNMMI Phys.202291710.1186/s40658‑022‑00431‑935122172
    [Google Scholar]
  17. DevrieseJ. BeelsL. MaesA. Van de WieleC. PottelH. Impact of PET reconstruction protocols on quantification of lesions that fulfil the PERCIST lesion inclusion criteria.EJNMMI Phys.2018513510.1186/s40658‑018‑0235‑630523429
    [Google Scholar]
  18. DelcroixO. BourhisD. KeromnesN. RobinP. Le RouxP.Y. AbgralR. SalaunP.Y. QuerellouS. Assessment of image quality and lesion detectability with digital PET/CT system.Front. Med.2021862909610.3389/fmed.2021.62909633693016
    [Google Scholar]
  19. SurtiS. KarpJ.S. Advances in time-of-flight PET.Phys. Med.2016321122210.1016/j.ejmp.2015.12.00726778577
    [Google Scholar]
  20. ChauvieS. BergesioF. De PontiE. MorzentiS. De MaggiA. RagazzoniM. ChiesaC. MatheoudR. The impact of time-of-flight, resolution recovery, and noise modelling in reconstruction algorithms in non-solid-state detectors PET/CT scanners: – Multi-centric comparison of activity recovery in a 68Ge phantom.Phys. Med.202075859110.1016/j.ejmp.2020.06.00232559650
    [Google Scholar]
  21. ZhuY.M. Ordered subset expectation maximization algorithm for positron emission tomographic image reconstruction using belief kernels.J. Med. Imaging201854110.1117/1.JMI.5.4.04400530840752
    [Google Scholar]
  22. SuljicA. TomšeP. JensterleL. SkrkD. The impact of reconstruction algorithms and time of flight information on PET/CT image quality.Radiol. Oncol.201549322723310.1515/raon‑2015‑001426401127
    [Google Scholar]
  23. ZhangZ. RoseS. YeJ. PerkinsA.E. ChenB. KaoC.M. SidkyE.Y. TungC.H. PanX. Optimization-based image reconstruction from low-count, list-mode TOF-PET data.IEEE Trans. Biomed. Eng.201865493694610.1109/TBME.2018.280294729570054
    [Google Scholar]
  24. LiC. LiY. XiJ. XiangS. HuK. Coincidence time resolution of radiation detector based on 6×6 mm2 ToF SiPM detectors with different readout schemes.Front. Phys.202311105023410.3389/fphy.2023.1050234
    [Google Scholar]
  25. KangH.G. KimK.J. KamadaK. YoshikawaA. YoshidaE. NishikidoF. YamayaT. Optimization of GFAG crystal surface treatment for SiPM based TOF PET detector.Biomed. Phys. Eng. Express20228202502510.1088/2057‑1976/ac56c635180713
    [Google Scholar]
  26. PaganoF. KratochwilN. SalomoniM. Advances in heterostructured scintillators: Toward a new generation of detectors for TOF-PET.Phys Med Biol2022671313501010.1088/1361‑6560/ac72ee
    [Google Scholar]
  27. GonzalezC.J. RauschI. SundarS.L.K. LassenM.L. MuzikO. MoserE. PappL. BeyerT. Hybrid imaging: Instrumentation and data processing.Front. Phys.201864710.3389/fphy.2018.00047
    [Google Scholar]
  28. MehranianA. ZaidiH. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.J. Nucl. Med.201556463564110.2967/jnumed.114.14881725745090
    [Google Scholar]
  29. ZaidiH. Del GuerraA. An outlook on future design of hybrid PET/MRI systems.Med. Phys.201138105667568910.1118/1.363390921992383
    [Google Scholar]
  30. MehranianA. ArabiH. ZaidiH. Vision 20/20: Magnetic resonance imaging‐guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.Med. Phys.20164331130115510.1118/1.494101426936700
    [Google Scholar]
  31. DelbekeD. SegallG.M. Status of and trends in nuclear medicine in the United States.J. Nucl. Med.201152S224S28S10.2967/jnumed.110.08568822144551
    [Google Scholar]
  32. ZamoraC.J.A. KashyapR. The IAEA technical cooperation programme and nuclear medicine in the developing world: Objectives, trends, and contributions.Semin. Nucl. Med.201343317218010.1053/j.semnuclmed.2012.11.00723561454
    [Google Scholar]
  33. MatosA.C. MassaR.C. LucenaF.M. VazT.R. Nuclear medicine technologist education and training in Europe.Nucl. Med. Commun.201536663163510.1097/MNM.000000000000028625714807
    [Google Scholar]
  34. DondiM. KashyapR. PascualT. PaezD. Nuñez-MillerR. Quality management in nuclear medicine for better patient care: The IAEA program.Semin. Nucl. Med.201343316717110.1053/j.semnuclmed.2012.11.00623561453
    [Google Scholar]
  35. CarterA.J.R. DelarosaB. HurH. An analysis of discrepancies between United Kingdom cancer research funding and societal burden and a comparison to previous and United States values.Health Res. Policy Syst.20151316210.1186/s12961‑015‑0050‑726526609
    [Google Scholar]
  36. GrossC.P. AndersonG.F. PoweN.R. The relation between funding by the National Institutes of Health and the burden of disease.N. Engl. J. Med.1999340241881188710.1056/NEJM19990617340240610369852
    [Google Scholar]
  37. SargentJ.F. U.S. research and development funding and performance: Fact sheet.2019Available from: https://ncses.nsf.gov/pubs/nsf19309
  38. HaunJ.N. TomoyasuN. PaolicelliC. MelilloC. AtkinsD. High-risk, high-impact health services research: Developing an innovation initiative.J. Veterans Stud.20206117110.21061/jvs.v6i1.169
    [Google Scholar]
  39. GundackerS. HeeringA. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector.Phys. Med. Biol.2020651717TR0110.1088/1361‑6560/ab7b2d32109891
    [Google Scholar]
  40. LecoqP. MorelC. PriorJ.O. VisvikisD. GundackerS. AuffrayE. KrižanP. TurtosR.M. ThersD. CharbonE. VarelaJ. de La TailleC. RivettiA. BretonD. PratteJ.F. NuytsJ. SurtiS. VandenbergheS. MarsdenP. ParodiK. BenllochJ.M. BenoitM. Roadmap toward the 10 ps time-of-flight PET challenge.Phys. Med. Biol.2020652121RM0110.1088/1361‑6560/ab950032434156
    [Google Scholar]
  41. Zarif YussefianN. ToussaintM. GaudinE. LecomteR. FontaineR. TOF benefits and trade-offs on image contrast-to-noise ratio performance for a small animal PET scanner.IEEE Trans. Radiat. Plasma Med. Sci.20215568769310.1109/TRPMS.2020.3018678
    [Google Scholar]
  42. SchaartD.R. SchrammG. NuytsJ. SurtiS. Time of flight in perspective: Instrumental and computational aspects of time resolution in positron emission tomography.IEEE Trans. Radiat. Plasma Med. Sci.20215559861810.1109/TRPMS.2021.308453934553105
    [Google Scholar]
  43. AmirrashediM. ZaidiH. AyM.R. Advances in preclinical PET instrumentation.PET Clin.202015440342610.1016/j.cpet.2020.06.00332768368
    [Google Scholar]
  44. ZhangJ. KnoppM. Advances in PET.ChamSpringer International Publishing202010.1007/978‑3‑030‑43040‑5
    [Google Scholar]
  45. ContiM. BendriemB. The new opportunities for high time resolution clinical TOF PET.Clin Transl Imaging2019713914710.1007/s40336‑019‑00316‑5
    [Google Scholar]
  46. XieT. KusterN. ZaidiH. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.Phys. Med. Biol.201762156185620610.1088/1361‑6560/aa75b428703120
    [Google Scholar]
  47. QiJ. LeahyR.M. Iterative reconstruction techniques in emission computed tomography.Phys. Med. Biol.20065115R541R57810.1088/0031‑9155/51/15/R0116861768
    [Google Scholar]
  48. CherryS.R. JonesT. KarpJ.S. QiJ. MosesW.W. BadawiR.D. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care.J. Nucl. Med.201859131210.2967/jnumed.116.18402828935835
    [Google Scholar]
  49. AshrafiniaS. Mohy-ud-DinH. KarakatsanisN.A. JhaA.K. CaseyM.E. KadrmasD.J. RahmimA. Generalized PSF modeling for optimized quantitation in PET imaging.Phys. Med. Biol.201762125149517910.1088/1361‑6560/aa691128338471
    [Google Scholar]
  50. van der VosC.S. KoopmanD. RijnsdorpS. ArendsA.J. BoellaardR. van DalenJ.A. LubberinkM. WillemsenA.T.M. VisserE.P. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET.Eur. J. Nucl. Med. Mol. Imaging201744S141610.1007/s00259‑017‑3727‑z28687866
    [Google Scholar]
  51. ZatcepinA. ZieglerS.I. Detectors in positron emission tomography.Z. Med. Phys.202333141210.1016/j.zemedi.2022.08.00436208967
    [Google Scholar]
  52. KeshavarzA. RostamiH. JafariE. AssadiM. Artificial intelligence-based PET image acquisition and reconstruction.Clin. Transl. Imaging202210434335310.1007/s40336‑022‑00508‑6
    [Google Scholar]
  53. XuH. LvW. ZhangH. MaJ. ZhaoP. LuL. Evaluation and optimization of radiomics features stability to respiratory motion in 18 F‐FDG 3D PET imaging.Med. Phys.20214895165517810.1002/mp.1502234085282
    [Google Scholar]
  54. AkamatsuG. Point-spread function and time-of-flight in PET image reconstruction.JPN. J. Radiol. Technol201571111115112210.6009/jjrt.2015_JSRT_71.11.1115
    [Google Scholar]
  55. VassL. ReaderA.J. Synthesized image reconstruction for post-reconstruction resolution recovery.IEEE Trans. Radiat. Plasma Med. Sci.20237547348210.1109/TRPMS.2023.324748938292296
    [Google Scholar]
  56. ReaderA.J. ZaidiH. Advances in PET image reconstruction.PET Clin.20072217319010.1016/j.cpet.2007.08.00127157872
    [Google Scholar]
  57. WibmerA.G. HricakH. UlanerG.A. WeberW. Trends in oncologic hybrid imaging.Eur J Hybrid Imaging201821110.1186/s41824‑017‑0019‑6
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056282004240403042345
Loading
/content/journals/cmir/10.2174/0115734056282004240403042345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test