Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aims

The aim of this study was to develop an algorithm model to predict the heat sink effect during thermal ablation of lung tumors and to assist doctors in the formulation and adjustment of surgical protocols.

Background

The heat sink effect is an important factor affecting the therapeutic effect of tumor thermal ablation. At present, there is no algorithm model to predict the intraoperative heat sink effect automatically, which needs to be measured manually, which lacks accuracy and consumes time.

Objective

To construct a segmentation model based on a convolutional neural network that can automatically identify and segment pulmonary nodules and vascular structure and measure the distance between the nodule and vascular.

Methods

First, the classical Faster RCNN model was used as the nodule detection network. After obtaining the bounding box of pulmonary nodules, the VSPP-NET model was used to segment nodules in the bounding box. The distance from the nodule to the vasculature was measured after the surrounding vasculature was segmented by the VSPP-NET model. The lung CT images of 392 patients with pulmonary nodules were used as the training data for the algorithm. 68 cases were used as algorithm validation data, 29 as nodule algorithm test data, and 80 as vascular algorithm test data. We compared the heat sink effect of 29 cases of data with the results of the algorithm model and expert segmentation and compared the difference between the two results.

Results

In pulmonary CT image vasculature segmentation, the recall and precision of the algorithm model reached >0.88 and >0.78, respectively. The average time for automatic segmentation of each image model is 29 seconds, and the average time for manual segmentation is 158 seconds. The output image of the model shows that the results of nodule segmentation and nodule distance measurement are satisfactory. In terms of heat sink effect prediction, the positive rate of the algorithm group was 28.3%, and that of the expert group was 32.1%, with no significant difference between the two groups (p=0.687).

Conclusion

The algorithm model developed in this study shows good performance in predicting the heat sink effect during pulmonary thermal ablation. It can improve the speed and accuracy of nodule and vessel segmentation, save ablation planning time, reduce the interference of human factors, and provide more reference information for surgeons to make ablation plans to improve the ablation effect.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056280329231121100335
2024-01-01
2025-07-15
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. QiuH. CaoS. XuR. Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020.Cancer Commun.202141101037104810.1002/cac2.1219734288593
    [Google Scholar]
  3. CaoW. ChenH.D. YuY.W. LiN. ChenW.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020.Chin. Med. J.2021134778379110.1097/CM9.000000000000147433734139
    [Google Scholar]
  4. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  5. LovlyC.M. Expanding horizons for treatment of early-stage lung cancer.N. Engl. J. Med.2022386212050205110.1056/NEJMe220333035403840
    [Google Scholar]
  6. HowladerN. NooneA.M. KrapchoM. Available from: https://seer.cancer.gov/archive/csr/1975_2018/
  7. MazzoneP. Preoperative evaluation of the lung resection candidate.Cleve Clin. J. Med.201279 Electronic Suppl 1eS172210.3949/ccjm.79.s2.04
    [Google Scholar]
  8. Prud’hommeC. DeschampsF. MoulinB. HakimeA. Al-AhmarM. MoallaS. RouxC. TeriitehauC. de BaereT. TselikasL. Image-guided lung metastasis ablation: A literature review.Int. J. Hyperthermia2019362374510.1080/02656736.2019.164735831537158
    [Google Scholar]
  9. National Comprehensive Cancer Network (NCCN)NCCN guidelines: treatment by cancer type.Available from:www.nccn.org/guidelines /category_1 (Accessed on: 2022).
    [Google Scholar]
  10. GenshaftS.J. SuhR.D. AbtinF. BaerlocherM.O. ChangA.J. DariushniaS.R. DevaneA.M. FaintuchS. HimesE.A. LisbergA. PadiaS. PatelS. TamA.L. YanagawaJ. Society of interventional radiology multidisciplinary position statement on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs: endorsed by the Canadian association for interventional radiology, the cardiovascular and interventional radiological society of Europe, and the society of interventional oncology.J. Vasc. Interv. Radiol.20213281241.e11241.e1210.1016/j.jvir.2021.04.02434332724
    [Google Scholar]
  11. VenturiniM. CariatiM. MarraP. MasalaS. PereiraP.L. CarrafielloG. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours.Cardiovasc. Intervent. Radiol.202043566768310.1007/s00270‑020‑02432‑632095842
    [Google Scholar]
  12. EberhardtW.E.E. De RuysscherD. WederW. Le PéchouxC. De LeynP. HoffmannH. WesteelV. StahelR. FelipE. PetersS. StahelR. FelipE. PetersS. KerrK. BesseB. VansteenkisteJ. EberhardtW. EdelmanM. MokT. O’ByrneK. NovelloS. BubendorfL. MarchettiA. BaasP. ReckM. SyrigosK. Paz-AresL. SmitE.F. MeldgaardP. AdjeiA. NicolsonM. CrinóL. Van SchilP. SenanS. Faivre-FinnC. RoccoG. VeronesiG. DouillardJ-Y. LimE. DoomsC. WederW. De RuysscherD. Le PechouxC. De LeynP. WesteelV. 2nd ESMO Consensus Conference in Lung Cancer: Locally advanced stage III non-small-cell lung cancer.Ann. Oncol.20152681573158810.1093/annonc/mdv18725897013
    [Google Scholar]
  13. DupuyD.E. ZagoriaR.J. AkerleyW. Mayo-SmithW.W. KavanaghP.V. SafranH. Percutaneous radiofrequency ablation of malignancies in the lung.AJR Am. J. Roentgenol.20001741575910.2214/ajr.174.1.174005710628454
    [Google Scholar]
  14. ChanM.V. HuoY.R. CaoC. RidleyL. Survival outcomes for surgical resection versus CT-guided percutaneous ablation for stage I non-small cell lung cancer (NSCLC): A systematic review and meta-analysis.Eur. Radiol.20213175421543310.1007/s00330‑020‑07634‑733449192
    [Google Scholar]
  15. GoldbergS.N. GazelleG.S. HalpernE.F. RittmanW.J. MuellerP.R. RosenthalD.I. Radiofrequency tissue ablation: Importance of local temperature along the electrode tip exposure in determining lesion shape and size.Acad. Radiol.19963321221810.1016/S1076‑6332(96)80443‑08796667
    [Google Scholar]
  16. PillaiK. AkhterJ. ChuaT.C. ShehataM. AlzahraniN. Al-AlemI. MorrisD.L. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model.Medicine2015949e58010.1097/MD.000000000000058025738477
    [Google Scholar]
  17. ShihT.C. LiuH.L. HorngA.T.L. Cooling effect of thermally significant blood vessels in perfused tumor tissue during thermal therapy.Int. Commun. Heat Mass Transf.200633213514110.1016/j.icheatmasstransfer.2005.08.003
    [Google Scholar]
  18. VaidyaN. BaragonaM. LavezzoV. MaessenR. VeroyK. Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radio-frequency ablation.Int. J. Hyperthermia20213819510410.1080/02656736.2020.186621733530763
    [Google Scholar]
  19. NolteT. VaidyaN. BaragonaM. EleveltA. LavezzoV. MaessenR. SchulzV. VeroyK. Study of flow effects on temperature-controlled radiofrequency ablation using phantom experiments and forward simulations.Med. Phys.20214894754476810.1002/mp.1513834320224
    [Google Scholar]
  20. JiangB. ZhaoK. YanK. WangS. MengY. LiuB. WuH. WangH. Percutaneous radiofrequency ablation near large vessels in beagle livers: The impact of time and distance on the ablation zone.Int. J. Hyperthermia20213811263127010.1080/02656736.2021.196651834404325
    [Google Scholar]
  21. SanpanichA. KhongkhanonC. KajornpredanonY. Thermal ablation for cancer treatment by using microwave energy in a simple lung model.The 7th 2014 Biomedical Engineering International Conference201410.1109/BMEiCON.2014.7017383
    [Google Scholar]
  22. PhairohC. SanpanichA. KajornpredanonY. Airflow effect on microwave ablation in lung model.2015 8th Biomedical Engineering International Conference (BMEiCON)201510.1109/BMEiCON.2015.7399559
    [Google Scholar]
  23. LehmannK.S. RitzJ.P. ValdeigS. KnappeV. SchenkA. WeihusenA. RiederC. HolmerC. ZurbuchenU. HoffmannP. PeitgenH.O. BuhrH.J. FrericksB.B. Ex situ quantification of the cooling effect of liver vessels on radiofrequency ablation.Langenbecks Arch. Surg.2009394347548110.1007/s00423‑009‑0480‑119274468
    [Google Scholar]
  24. ZhangT. YangY. WangJ. MenK. WangX. DengL. BiN. Comparison between atlas and convolutional neural network based automatic segmentation of multiple organs at risk in non-small cell lung cancer.Medicine20209934e2180010.1097/MD.000000000002180032846816
    [Google Scholar]
  25. FengX. QingK. TustisonN.J. MeyerC.H. ChenQ. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.Med. Phys.20194652169218010.1002/mp.1346630830685
    [Google Scholar]
  26. ZhouX. Automatic segmentation of multiple organs on 3D CT images by using deep learning approaches.Adv. Exp. Med. Biol.2020121313514710.1007/978‑3‑030‑33128‑3_932030668
    [Google Scholar]
  27. YushkevichP.A. PivenJ. HazlettH.C. SmithR.G. HoS. GeeJ.C. GerigG. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.Neuroimage20063131116112810.1016/j.neuroimage.2006.01.01516545965
    [Google Scholar]
  28. CignoniP. CallieriM. CorsiniM. DellepianeM. GanovelliF. RanzugliaG. MeshLab: an open-source mesh processing tool.6th Eurographics Italian Chapter ConferenceSalerno, ItalyEurographics Association2008129136
    [Google Scholar]
  29. LehmannK.S. PochF.G.M. RiederC. SchenkA. StrouxA. FrericksB.B. GemeinhardtO. HolmerC. KreisM.E. RitzJ.P. ZurbuchenU. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.J. Hepatobiliary Pancreat. Sci.201623850851610.1002/jhbp.37027338856
    [Google Scholar]
  30. ChuK.F. DupuyD.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy.Nat. Rev. Cancer201414319920810.1038/nrc367224561446
    [Google Scholar]
  31. de BaereT. RobinsonJ.M. RaoP. TeriitehauC. DeschampsF. Radiofrequency ablation of lung metastases close to large vessels during vascular occlusion: preliminary experience.J. Vasc. Interv. Radiol.201122674975410.1016/j.jvir.2011.02.02821616429
    [Google Scholar]
  32. OshimaF. YamakadoK. AkeboshiM. TakakiH. NakatsukaA. MakitaM. TakedaK. Lung radiofrequency ablation with and without bronchial occlusion: experimental study in porcine lungs.J. Vasc. Interv. Radiol.200415121451145610.1097/01.RVI.0000140640.87399.5815590804
    [Google Scholar]
  33. LuD.S.K. RamanS.S. VodopichD.J. WangM. SayreJ. LassmanC. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect.AJR Am. J. Roentgenol.20021781475110.2214/ajr.178.1.178004711756085
    [Google Scholar]
  34. BorneR.T. SauerW.H. ZipseM.M. ZhengL. TzouW. NguyenD.T. Longer duration versus increasing power during radiofrequency ablation yields different ablation lesion characteristics.JACC Clin. Electrophysiol.20184790290810.1016/j.jacep.2018.03.02030025690
    [Google Scholar]
  35. MilletariF. NavabN. AhmadiS. V-net: fully convolutional neural networks for volumetric medical image segmentation.2016 Fourth International Conference on 3D Vision (3DV).Stanford, CA, United StatesInstitute of Electrical and Electronics Engineers Inc201656557110.1109/3DV.2016.79
    [Google Scholar]
  36. HeK. ZhangX. RenS. SunJ. Spatial pyramid pooling in deep convolutional networks for visual recognition.IEEE Trans. Pattern Anal. Mach. Intell.20153791904191610.1109/TPAMI.2015.238982426353135
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056280329231121100335
Loading
/content/journals/cmir/10.2174/0115734056280329231121100335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test