Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Interstitial lung diseases (ILD) encompass various disorders characterized by inflammation and/or fibrosis in the lung interstitium. These conditions produce distinct patterns in High-Resolution Computed Tomography (HRCT).

Objective

We employ a deep learning method to diagnose the most commonly encountered patterns in ILD differentially.

Materials and Methods

Patients were categorized into usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), and normal lung parenchyma groups. VGG16 and VGG19 deep learning architectures were utilized. 85% of each pattern was used as training data for the artificial intelligence model. The models were then tasked with diagnosing the patterns in the test dataset without human intervention. Accuracy rates were calculated for both models.

Results

1 The success of the VGG16 model in the test phase was 95.02% accuracy. 2 Using the same data, 98.05% accuracy results were obtained in the test phase of the VGG19 model.

Conclusion

Deep Learning models showed high accuracy in distinguishing the two most common patterns of ILD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056279295231229095436
2024-01-01
2025-06-26
The full text of this item is not currently available.

References

  1. KrishnaR ChapmanK UllahS. Idiopathic Pulmonary FibrosisStatPearlsStatPearls PublishingTreasure Island (FL)2022
    [Google Scholar]
  2. RaghuG. Remy-JardinM. MyersJ.L. RicheldiL. RyersonC.J. LedererD.J. BehrJ. CottinV. DanoffS.K. MorellF. FlahertyK.R. WellsA. MartinezF.J. AzumaA. BiceT.J. BourosD. BrownK.K. CollardH.R. DuggalA. GalvinL. InoueY. JenkinsR.G. JohkohT. KazerooniE.A. KitaichiM. KnightS.L. MansourG. NicholsonA.G. PipavathS.N.J. Buendía-RoldánI. SelmanM. TravisW.D. WalshS.L.F. WilsonK.C. American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline.Am. J. Respir. Crit. Care Med.20181985e44e6810.1164/rccm.201807‑1255ST30168753
    [Google Scholar]
  3. American Thoracic SocietyEuropean Respiratory Society American thoracic society/european respiratory society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. this joint statement of the american thoracic society (ATS), and the european respiratory society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS executive committee, June 2001.Am. J. Respir. Crit. Care Med.2002165227730410.1164/ajrccm.165.2.ats0111790668
    [Google Scholar]
  4. SverzellatiN. WellsA.U. TomassettiS. DesaiS.R. CopleyS.J. AzizZ.A. ZompatoriM. ChilosiM. NicholsonA.G. PolettiV. HansellD.M. Biopsy-proved idiopathic pulmonary fibrosis: Spectrum of nondiagnostic thin-section CT diagnoses.Radiology2010254395796410.1148/radiol.099089820177106
    [Google Scholar]
  5. GuptaN. GuptaD. KhannaA. Rebouças FilhoP.P. de AlbuquerqueV.H.C. Evolutionary algorithms for automatic lung disease detection.Measurement201914059060810.1016/j.measurement.2019.02.042
    [Google Scholar]
  6. MessaoudS BouaafiaS MaraouiA KhrijiL AmmariAC MachhoutM Virtual healthcare center for COVID-19 patient detection based on artificial intelligence approaches.Can J Infect Dis Med Microbiol20222022678620310.1155/2022/6786203
    [Google Scholar]
  7. AnthimopoulosM. ChristodoulidisS. ChristeA. MougiakakouS. Classification of interstitial lung disease patterns using local DCT features and random forest.36th Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyChicago, IL, USA20146040604310.1109/EMBC.2014.6945006
    [Google Scholar]
  8. RamalhoG.L.B. Rebouças FilhoP.P. MedeirosF.N.S. CortezP.C. Lung disease detection using feature extraction and extreme learning machine.Rev. Bras. Eng. Bioméd.201430320721410.1590/rbeb.2014.019
    [Google Scholar]
  9. GaoM. LiuS. QiY. GuoX. ShangX. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA–PCG associations.Brief. Bioinform.2022236bbac45210.1093/bib/bbac45236305456
    [Google Scholar]
  10. GaoM ShangX Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanismFront Microbiol202314114777810.3389/fmicb.2023.1147778
    [Google Scholar]
  11. SofferS. Ben-CohenA. ShimonO. AmitaiM.M. GreenspanH. KlangE. Convolutional neural networks for radiologic images: A radiologist’s guide.Radiology2019290359060610.1148/radiol.201818054730694159
    [Google Scholar]
  12. AbadaR. AbubakarA.M. BilalM.T. An overview on deep leaning application of big data.Mesop. J. Big Data20222022313510.58496/MJBD/2022/004
    [Google Scholar]
  13. LoS.C.B. LinJ.S. FreedmanM.T. MunS.K. Computer-assisted diagnosis of lung nodule detection using an artificial convolution neural network.Proc SPIE Int Soc Opt Eng 199318988596910.1117/12.154572
    [Google Scholar]
  14. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition.arXiv preprint arXiv201414091556
    [Google Scholar]
  15. CaoZ. HuangJ. HeX. ZongZ. BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images.Knowl. Base. Syst.202225811004010.1016/j.knosys.2022.11004036284666
    [Google Scholar]
  16. WangSH FernandesSL ZhuZ ZhangYD AVNC: Attention-based VGG-style network for COVID-19 diagnosis by CBAM.IEEE Sens J20212218174311743810.1109/JSEN.2021.3062442
    [Google Scholar]
  17. QuX. LuH. TangW. WangS. ZhengD. HouY. JiangJ. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.Med. Phys.20224995787579810.1002/mp.1585235866492
    [Google Scholar]
  18. JiangB. LiN. ShiX. ZhangS. LiJ. de BockG.H. VliegenthartR. XieX. Deep learning reconstruction shows better lung nodule detection for ultra–low-dose chest CT.Radiology2022303120221210.1148/radiol.21055135040674
    [Google Scholar]
  19. WalshS.L.F. MackintoshJ.A. CalandrielloL. SilvaM. SverzellatiN. LariciA.R. HumphriesS.M. LynchD.A. JoH.E. GlaspoleI. GraingeC. GohN. HopkinsP.M.A. MoodleyY. ReynoldsP.N. ZappalaC. KeirG. CooperW.A. MaharA.M. EllisS. WellsA.U. CorteT.J. Deep learning–based outcome prediction in progressive fibrotic lung disease using high-resolution computed tomography.Am. J. Respir. Crit. Care Med.2022206788389110.1164/rccm.202112‑2684OC35696341
    [Google Scholar]
  20. DoppalapudiS. QiuR.G. BadrY. Lung cancer survival period prediction and understanding: Deep learning approaches.Int. J. Med. Inform.202114810437110.1016/j.ijmedinf.2020.10437133461009
    [Google Scholar]
  21. MekovE. MiravitllesM. PetkovR. Artificial intelligence and machine learning in respiratory medicine.Expert Rev. Respir. Med.202014655956410.1080/17476348.2020.174318132166988
    [Google Scholar]
  22. JunayedM.S. JenyA.A. IslamM.B. AhmedI. ShahA.S. An efficient end-to-end deep neural network for interstitial lung disease recognition and classification.Turk. J. Electr. Eng. Comput. Sci.20223041235125010.55730/1300‑0632.3846
    [Google Scholar]
  23. HenriquezA. Chest X-ray classification for pneumonia.MediumAvailable from: https://alvarohenriquez-93558.medium.com/chest-x-ray-classification-for-pneumonia-5ed093de87ef
    [Google Scholar]
  24. ShaishH. AhmedF.S. LedererD. D’SouzaB. ArmentaP. SalvatoreM. SaqiA. HuangS. JambawalikarS. MutasaS. Deep learning of computed tomography virtual wedge resection for prediction of histologic usual interstitial pneumonitis.Ann. Am. Thorac. Soc.2021181515910.1513/AnnalsATS.202001‑068OC32857594
    [Google Scholar]
  25. MeiX LiuZ SinghA Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data.Nat Commun2023141227210.1038/s41467‑023‑37720‑5
    [Google Scholar]
  26. AnthimopoulosM. ChristodoulidisS. EbnerL. ChristeA. MougiakakouS. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network.IEEE Trans. Med. Imaging20163551207121610.1109/TMI.2016.253586526955021
    [Google Scholar]
  27. BondfaleN. BhagwatS. Convolutional neural network for categorization of lung tissue patterns in interstitial lung diseases.2018 Second international conference on inventive communication and computational technologies (ICICCT)20181150115410.1109/ICICCT.2018.8473302
    [Google Scholar]
  28. GlassD.S. GrossfeldD. RennaH.A. AgarwalaP. SpieglerP. DeLeonJ. ReissA.B. Idiopathic pulmonary fibrosis: Current and future treatment.Clin. Respir. J.2022162849610.1111/crj.1346635001525
    [Google Scholar]
  29. DesaiC. Image classification using transfer learning and deep learning.Int. J. Comput. Sci. Eng.2021109253942539810.18535/ijecs/v10i9.4622
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056279295231229095436
Loading
/content/journals/cmir/10.2174/0115734056279295231229095436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test