Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Dual-energy computed tomography (DECT) applies two energy spectra distributions to collect raw data based on traditional CT imaging. The application of hepatobiliary imaging, has the advantages of optimizing the scanning scheme, improving the imaging quality, highlighting the disease characterization, and increasing the detection rate of lesions. In order to summarize the clinical application value of DECT in hepatobiliary diseases, we searched the technical principles of DECT and its existing studies, case reports, and clinical guidelines in hepatobiliary imaging from 2010 to 2023 (especially in the past 5 years) through PubMed and CNKI, focusing on the clinical application of DECT in hepatobiliary diseases, including liver tumors, diffuse liver lesions, and biliary system lesions. The first part of this article briefly describes the basic concept and technical advantages of DECT. The following will be reviewed:the detection of lesions, diagnosis and differential diagnosis of lesions, hepatic steatosis, quantitative analysis of liver iron, and analyze the advantages and disadvantages of DECT in hepatobiliary imaging. Finally, the contents of this paper are summarized and the development prospect of DECT in hepatobiliary imaging is prospected.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056275595231208075930
2024-01-01
2025-06-26
The full text of this item is not currently available.

References

  1. HounsfieldG.N. Computerized transverse axial scanning (tomography): Part 1. Description of system.Br. J. Radiol.1973465521016102210.1259/0007‑1285‑46‑552‑10164757352
    [Google Scholar]
  2. GenantH.K. BoydD. Quantitative bone mineral analysis using dual energy computed tomography.Invest. Radiol.197712654555110.1097/00004424‑197711000‑00015591258
    [Google Scholar]
  3. FlohrT.G. McColloughC.H. BruderH. PetersilkaM. GruberK. SüβC. GrasruckM. StierstorferK. KraussB. RaupachR. PrimakA.N. KüttnerA. AchenbachS. BeckerC. KoppA. OhnesorgeB.M. First performance evaluation of a dual-source CT (DSCT) system.Eur. Radiol.200616225626810.1007/s00330‑005‑2919‑216341833
    [Google Scholar]
  4. GooH.W. GooJ.M. Dual-Energy CT: New Horizon in Medical Imaging.Korean J. Radiol.201718455556910.3348/kjr.2017.18.4.55528670151
    [Google Scholar]
  5. RayG. Management of liver diseases: Current perspectives.World J. Gastroenterol.202228405818582610.3748/wjg.v28.i40.581836353204
    [Google Scholar]
  6. NiuX. ZhuL. XuY. ZhangM. HaoY. MaL. LiY. XingH. Global prevalence, incidence, and outcomes of alcohol related liver diseases: A systematic review and meta-analysis.BMC Public Health202323185910.1186/s12889‑023‑15749‑x37170239
    [Google Scholar]
  7. Maeso-DíazR. Gracia-SanchoJ. Aging and chronic liver disease.Semin. Liver Dis.202040437338410.1055/s‑0040‑171544633764489
    [Google Scholar]
  8. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.01430266282
    [Google Scholar]
  9. RichardsonM.L. GenantH.K. CannC. EttingerB. GordanG.S. KolbF.O. ReiserU.J. Assessment of metabolic bone diseases by quantitative computed tomography.Clin. Orthop. Relat. Res.1985195&NA;22423810.1097/00003086‑198505000‑000263978956
    [Google Scholar]
  10. BrooksR.A. A quantitative theory of the Hounsfield unit and its application to dual energy scanning.J. Comput. Assist. Tomogr.19771448749310.1097/00004728‑197710000‑00016615229
    [Google Scholar]
  11. HamidS. NasirM.U. SoA. AndrewsG. NicolaouS. QamarS.R. Clinical applications of dual-energy CT.Korean J. Radiol.202122697098210.3348/kjr.2020.099633856133
    [Google Scholar]
  12. ZengY. GengD. ZhangJ. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications.Quant. Imaging Med. Surg.202111114627464310.21037/qims‑20‑119634737929
    [Google Scholar]
  13. YooJ. LeeJ.M. YoonJ.H. JooI. LeeE.S. JeonS.K. JangS. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma.Abdom. Radiol.20214673217322610.1007/s00261‑020‑02888‑733713160
    [Google Scholar]
  14. NagayamaY. IyamaA. OdaS. TaguchiN. NakauraT. UtsunomiyaD. KikuchiY. YamashitaY. Dual-layer dual-energy computed tomography for the assessment of hypovascular hepatic metastases: impact of closing k-edge on image quality and lesion detectability.Eur. Radiol.20192962837284710.1007/s00330‑018‑5789‑030377793
    [Google Scholar]
  15. MatsudaM. TsudaT. KidoT. TanakaH. NishiyamaH. ItohT. NakaoK. HirookaM. MochizukiT. Dual-energy computed tomography in patients with small hepatocellular carcinoma: Utility of noise-reduced monoenergetic images for the evaluation of washout and image quality in the equilibrium phase.J. Comput. Assist. Tomogr.201842693794310.1097/RCT.000000000000075229659425
    [Google Scholar]
  16. HeC. LiuJ. HuS. QingH. LuoH. ChenX. LiuY. ZhouP. Improvement of image quality of laryngeal squamous cell carcinoma using noise-optimized virtual monoenergetic image and nonlinear blending image algorithms in dual-energy computed tomography.Head Neck202143103125313110.1002/hed.2681234268830
    [Google Scholar]
  17. BetteS. DeckerJ.A. BraunF.M. BeckerJ. HaertingM. HaeckelT. GebhardM. RischF. WoźnickiP. Scheurig-MuenklerC. KroenckeT.J. SchwarzF. Optimal conspicuity of liver metastases in virtual monochromatic imaging reconstructions on a novel photon-counting detector CT—effect of keV settings and BMI.Diagnostics2022125123110.3390/diagnostics1205123135626387
    [Google Scholar]
  18. VossB.A. Impact of dual-energy 50-keV virtual monoenergetic images on radiologist confidence in detection of key imaging findings of small hepatocellular carcinomas using multiphase liver CT.Acta Radiol.20216311284185121105299334723681
    [Google Scholar]
  19. PfeifferD. ParakhA. PatinoM. KambadakoneA. RummenyE.J. SahaniD.V. Iodine material density images in dual-energy CT: Quantification of contrast uptake and washout in HCC.Abdom. Radiol.201843123317332310.1007/s00261‑018‑1636‑729774382
    [Google Scholar]
  20. DiMasoL.D. MillerJ.R. LawlessM.J. BassettiM.F. DeWerdL.A. HuangJ. Investigating split-filter dual-energy CT for improving liver tumor visibility for radiation therapy.J. Appl. Clin. Med. Phys.202021824925510.1002/acm2.1290432410336
    [Google Scholar]
  21. SeoJ.Y. JooI. YoonJ.H. KangH.J. KimS. KimJ.H. AhnC. LeeJ.M. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique.Eur. J. Radiol.202215411039010.1016/j.ejrad.2022.11039035724579
    [Google Scholar]
  22. LeeT. LeeJ.M. YoonJ.H. JooI. BaeJ.S. YooJ. KimJ.H. AhnC. KimJ.H. Deep learning–based image reconstruction of 40-keV virtual monoenergetic images of dual-energy CT for the assessment of hypoenhancing hepatic metastasis.Eur. Radiol.20223296407641710.1007/s00330‑022‑08728‑035380228
    [Google Scholar]
  23. LestraT. MuléS. MilletI. Carsin-VuA. TaourelP. HoeffelC. Applications of dual energy computed tomography in abdominal imaging.Diagn. Interv. Imaging201697659360310.1016/j.diii.2015.11.01826993967
    [Google Scholar]
  24. PatelB.N. RosenbergM. VernuccioF. Ramirez-GiraldoJ.C. NelsonR. FarjatA. MarinD. Characterization of small incidental indeterminate hypoattenuating hepatic lesions: Added value of single-phase contrast-enhanced dual-energy CT material attenuation analysis.AJR Am. J. Roentgenol.2018211357157910.2214/AJR.17.1917030040464
    [Google Scholar]
  25. KaltenbachB. WichmannJ.L. PfeiferS. AlbrechtM.H. BoozC. LengaL. HammerstinglR. D’AngeloT. VoglT.J. MartinS.S. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT.Eur. J. Radiol.2018105202410.1016/j.ejrad.2018.05.01930017280
    [Google Scholar]
  26. LiW. LiR. ZhaoX. LinX. YuY. ZhangJ. ChenK. ChaiW. YanF. Differentiation of hepatocellular carcinoma from hepatic hemangioma and focal nodular hyperplasia using computed tomographic spectral imaging.J. Clin. Transl. Hepatol.202100000000010.14218/JCTH.2020.0017334221917
    [Google Scholar]
  27. WangN. JuY. WuJ. LiuA. ChenA. LiuJ. LiuY. LiJ. Differentiation of liver abscess from liver metastasis using dual-energy spectral CT quantitative parameters.Eur. J. Radiol.201911320420810.1016/j.ejrad.2019.02.02430927948
    [Google Scholar]
  28. SunY. WuL. ZhongY. ZhouK. HouY. WangZ. ZhangZ. XieJ. WangC. ChenD. HuangY. WeiX. ShiY. ZhaoZ. LiY. GuoZ. YuQ. XuL. VolpeG. QiuS. ZhouJ. WardC. SunH. YinY. XuX. WangX. EstebanM.A. YangH. WangJ. DeanM. ZhangY. LiuS. YangX. FanJ. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.Cell20211842404421.e1610.1016/j.cell.2020.11.04133357445
    [Google Scholar]
  29. ErstadD.J. TanabeK.K. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma.Ann. Surg. Oncol.20192651474149310.1245/s10434‑019‑07227‑930788629
    [Google Scholar]
  30. YangC. ZhangS. JiaY. YuY. DuanH. ZhangX. MaG. RenC. YuN. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion.Eur. J. Radiol.20179522222710.1016/j.ejrad.2017.08.02228987671
    [Google Scholar]
  31. KimT.M. LeeJ.M. YoonJ.H. JooI. ParkS.J. JeonS.K. SchmidtB. MartinS. Prediction of microvascular invasion of hepatocellular carcinoma: Value of volumetric iodine quantification using preoperative dual-energy computed tomography.Cancer Imaging20202016010.1186/s40644‑020‑00338‑732811570
    [Google Scholar]
  32. LewinM. Laurent-BellueA. DesterkeC. RaduA. FeghaliJ.A. FarahJ. AgostiniH. NaultJ.C. VibertE. GuettierC. Evaluation of perfusion CT and dual-energy CT for predicting microvascular invasion of hepatocellular carcinoma.Abdom. Radiol.20224762115212710.1007/s00261‑022‑03511‑735419748
    [Google Scholar]
  33. GunasekaranG. BekkiY. LourdusamyV. SchwartzM. Surgical treatments of hepatobiliary cancers.Hepatology202173S112813610.1002/hep.3132532438491
    [Google Scholar]
  34. ReimerR.P. HokampN.G. NiehoffJ. ZopfsD. LennartzS. HeidarM. WahbaR. StippelD. MaintzD. dos SantosD.P. WybranskiC. Value of spectral detector computed tomography for the early assessment of technique efficacy after microwave ablation of hepatocellular carcinoma.PLoS One2021166e025267810.1371/journal.pone.025267834129650
    [Google Scholar]
  35. ThaissW.M. HaberlandU. KaufmannS. HeppT. SchulzeM. BlumA.C. KetelsenD. NikolaouK. HorgerM. SauterA.W. Dose optimization of perfusion-derived response assessment in hepatocellular carcinoma treated with transarterial chemoembolization: Comparison of volume perfusion CT and iodine concentration.Acad. Radiol.20192691154116310.1016/j.acra.2018.09.02630482626
    [Google Scholar]
  36. YueX. JiangQ. HuX. CenC. SongS. QianK. LuY. YangM. LiQ. HanP. Quantitative dual-energy CT for evaluating hepatocellular carcinoma after transarterial chemoembolization.Sci. Rep.20211111112710.1038/s41598‑021‑90508‑934045528
    [Google Scholar]
  37. LubnerM.G. ZiemlewiczT.J. WellsS.A. LiK. WuP.H. HinshawJ.L. LeeF.T.Jr BraceC.L. Advanced CT techniques for hepatic microwave ablation zone monitoring and follow-up.Abdom. Radiol.20224782658266810.1007/s00261‑021‑03333‑z34731282
    [Google Scholar]
  38. ParolaM. PinzaniM. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues.Mol. Aspects Med.201965375510.1016/j.mam.2018.09.00230213667
    [Google Scholar]
  39. KimH.P. IdowuM.O. MospanA.R. AllmonA.G. RodenM. NewsomeP. LokA.S. ThuluvathP.J. TaunkJ. FriedM.W. SanyalA.J. BarrittA.S.IV Liver biopsy in the real world—reporting, expert concordance and correlation with a pragmatic clinical diagnosis.Aliment. Pharmacol. Ther.20215411-121472148010.1111/apt.1667434694013
    [Google Scholar]
  40. WeeA. Ting SoonG.S. Liver biopsy in the quantitative assessment of liver fibrosis in nonalcoholic fatty liver disease.Indian J. Pathol. Microbiol.202164S510410.4103/IJPM.IJPM_947_2034135151
    [Google Scholar]
  41. SelvarajE.A. MózesF.E. JayaswalA.N.A. ZafarmandM.H. ValiY. LeeJ.A. LevickC.K. YoungL.A.J. PalaniyappanN. LiuC.H. AithalG.P. Romero-GómezM. BrosnanM.J. TuthillT.A. AnsteeQ.M. NeubauerS. HarrisonS.A. BossuytP.M. PavlidesM. AnsteeQ. DalyA. JohnsonK. GovaereO. CockellS. TiniakosD. BedossaP. OakleyF. CordellH. DayC. WondersK. BossuytP. ZafarmandH. ValiY. LeeJ. RatziuV. ClementK. PaisR. SchuppanD. SchattenbergJ. Vidal-PuigT. VaccaM. Rodrigues-CuencaS. AllisonM. KamzolasI. PetsalakiE. OresicM. HyötyläinenT. McGlincheyA. MatoJ.M. MilletO. DufourJ-F. BerzigottiA. PavlidesM. HarrisonS. NeubauerS. CobboldJ. MozesF. AkhtarS. BanerjeeR. KellyM. ShumbayawondaE. DennisA. ErpicumC. Romero-GómezM. Gómez-GonzálezE. AmpueroJ. CastellJ. Gallego-DuránR. FernándezI. Montero-VallejoR. KarsdalM. ErhardtsenE. RasmussenD. LeemingD.J. FiskerM.J. SinisiA. MusaK. BetsouF. SandtE. ToniniM. BugianesiE. RossoC. ArmandiA. MarraF. GastaldelliA. SvegliatiG. BoursierJ. FrancqueS. VonghiaL. EkstedtM. KechagiasS. Yki-JarvinenH. LuukkonenP. van MilS. PapatheodoridisG. Cortez-PintoH. ValentiL. PettaS. MieleL. GeierA. TrautweinC. AithalG. HockingsP. NewsomeP. WennD. Pereira RodriguesC.M. ChaumatP. HanfR. TrylesinskiA. OrtizP. DuffinK. BrosnanJ. TuthillT. McLeodE. ErtleJ. YounesR. OstroffR. AlexanderL. KjærM.S. MikkelsenL.F. BalpM-M. BrassC. JenningsL. MarticM. LoefflerJ. HanauerG. ShankarS. FournierC. PepinK. EhmanR. MyersJ. HoG. TorstensonR. MyersR. DowardL. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis.J. Hepatol.202175477078510.1016/j.jhep.2021.04.04433991635
    [Google Scholar]
  42. OzturkA. OlsonM.C. SamirA.E. VenkateshS.K. Liver fibrosis assessment: MR and US elastography.Abdom. Radiol.20214793037305010.1007/s00261‑021‑03269‑434687329
    [Google Scholar]
  43. MoritaK. NishieA. UshijimaY. TakayamaY. FujitaN. KuboY. IshimatsuK. YoshizumiT. MaeharaJ. IshigamiK. Noninvasive assessment of liver fibrosis by dual-layer spectral detector CT.Eur. J. Radiol.202113610957510.1016/j.ejrad.2021.10957533548853
    [Google Scholar]
  44. ItoE. SatoK. YamamotoR. SakamotoK. UrakawaH. YoshimitsuK. Usefulness of iodine-blood material density images in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine dual-energy liver CT protocol equilibrium phase data: Preliminary experience.Jpn. J. Radiol.202038436537310.1007/s11604‑019‑00918‑z31907717
    [Google Scholar]
  45. SofueK. TsurusakiM. MiletoA. HyodoT. SasakiK. NishiiT. ChikugoT. YadaN. KudoM. SugimuraK. MurakamiT. Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data.Hepatol. Res.201848121008101910.1111/hepr.1320529908040
    [Google Scholar]
  46. ShinagawaY. SakamotoK. SatoK. ItoE. UrakawaH. YoshimitsuK. Usefulness of new subtraction algorithm in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine liver CT protocol equilibrium phase data: Preliminary experience.Eur. J. Radiol.20181039910410.1016/j.ejrad.2018.04.01229803393
    [Google Scholar]
  47. GuoS.L. SuL.N. ZhaiY.N. ChirumeW.M. LeiJ.Q. ZhangH. YangL. ShenX.P. WenX.X. GuoY.M. The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis.Clin. Radiol.201772324224610.1016/j.crad.2016.10.00328341030
    [Google Scholar]
  48. CiceroG. MazziottiS. SilipigniS. BlandinoA. CantisaniV. PergolizziS. D’AngeloT. StagnoA. MaimoneS. SquadritoG. AscentiG. Dual-energy CT quantification of fractional extracellular space in cirrhotic patients: Comparison between early and delayed equilibrium phases and correlation with oesophageal varices.Radiol. Med.2021126676176710.1007/s11547‑021‑01341‑z33715036
    [Google Scholar]
  49. MarriU.K. DasP. Shalimar KalaivaniM. SrivastavaD.N. MadhusudhanK.S. Noninvasive staging of liver fibrosis using 5-minute delayed dual-energy CT: Comparison with US elastography and correlation with histologic findings.Radiology2021298360060810.1148/radiol.202120223233399510
    [Google Scholar]
  50. NagayamaY. KatoY. InoueT. NakauraT. OdaS. KidohM. IkedaO. HiraiT. Liver fibrosis assessment with multiphasic dual-energy CT: diagnostic performance of iodine uptake parameters.Eur. Radiol.20213185779579010.1007/s00330‑021‑07706‑233768289
    [Google Scholar]
  51. LubnerM.G. JonesD. KlokeJ. SaidA. PickhardtP.J. CT texture analysis of the liver for assessing hepatic fibrosis in patients with hepatitis C virus.Br. J. Radiol.20199210932018015330182750
    [Google Scholar]
  52. ChoiB. ChoiI.Y. ChaS.H. YeomS.K. ChungH.H. LeeS.H. ChaJ. LeeJ.H. Feasibility of computed tomography texture analysis of hepatic fibrosis using dual-energy spectral detector computed tomography.Jpn. J. Radiol.202038121179118910.1007/s11604‑020‑01020‑532666182
    [Google Scholar]
  53. PickhardtP.J. GraffyP.M. ReederS.B. HernandoD. LiK. Quantification of liver fat content with unenhanced MDCT: Phantom and clinical correlation with MRI proton density fat fraction.AJR Am. J. Roentgenol.20182113W151W15710.2214/AJR.17.1939130016142
    [Google Scholar]
  54. HyodoT. YadaN. HoriM. MaenishiO. LambP. SasakiK. OnodaM. KudoM. MochizukiT. MurakamiT. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: Clinical evaluation.Radiology2017283110811810.1148/radiol.201716013028212047
    [Google Scholar]
  55. ZhangQ. ZhaoY. WuJ. XieL. ChenA. LiuY. SongQ. LiJ. WuT. XieL. LiuA. Quantification of hepatic fat fraction in patients with nonalcoholic fatty liver disease: Comparison of multimaterial decomposition algorithm and fat (Water)-based material decomposition algorithm using single-source dual-energy computed tomography.J. Comput. Assist. Tomogr.2021451121710.1097/RCT.000000000000111233186174
    [Google Scholar]
  56. ZhangP.P. ChoiH.H. OhligerM.A. Detection of fatty liver using virtual non-contrast dual-energy CT.Abdom. Radiol.20224762046205610.1007/s00261‑022‑03482‑935306577
    [Google Scholar]
  57. CaoQ. ShangS. HanX. CaoD. ZhaoL. Evaluation on heterogeneity of fatty liver in rats: A multiparameter quantitative analysis by dual energy CT.Acad. Radiol.2019265e47e5510.1016/j.acra.2018.05.01330041922
    [Google Scholar]
  58. MasakiS. HashimotoY. KunishoS. KimotoA. KitadaiY. Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer.Int. J. Exp. Pathol.2020101516217010.1111/iep.1237132783302
    [Google Scholar]
  59. LiY. SuX. RohatgiN. ZhangY. BrestoffJ.R. ShoghiK.I. XuY. SemenkovichC.F. HarrisC.A. PetersonL.L. WeibaecherK.N. TeitelbaumS.L. ZouW. Hepatic lipids promote liver metastasis.JCI Insight2020517e13621510.1172/jci.insight.13621532879136
    [Google Scholar]
  60. LengaL. LangeM. ArendtC.T. BoozC. YelI. BodelleB. D’AngeloT. HammerstinglR.M. HuizingaN.A. VoglT.J. MartinS.S. AlbrechtM.H. Measurement reliability and diagnostic accuracy of virtual monoenergetic dual-energy CT in patients with colorectal liver metastases.Acad. Radiol.2020277e168e17510.1016/j.acra.2019.09.02031727567
    [Google Scholar]
  61. LengaL. CzwiklaR. WichmannJ.L. LeithnerD. AlbrechtM.H. BoozC. ArendtC.T. YelI. D’AngeloT. VoglT.J. MartinS.S. Dual-energy CT in patients with colorectal cancer: Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging.Eur. J. Radiol.201810618419110.1016/j.ejrad.2018.07.02730150043
    [Google Scholar]
  62. LengaL. LangeM. ArendtC.T. YelI. BoozC. DurdenJ. LeithnerD. VoglT.J. AlbrechtM.H. MartinS.S. Can dual-energy CT-based virtual monoenergetic imaging improve the assessment of hypodense liver metastases in patients with hepatic steatosis?Acad. Radiol.202128676977710.1016/j.acra.2020.03.04432446765
    [Google Scholar]
  63. MaQ. HuJ. YangW. HouY. Dual-layer detector spectral CT versus magnetic resonance imaging for the assessment of iron overload in myelodysplastic syndromes and aplastic anemia.Jpn. J. Radiol.202038437438110.1007/s11604‑020‑00921‑931989387
    [Google Scholar]
  64. ZhangY. XiaoC. LiJ. SongL. ZhaoY. HanS. LiZ. GuoC. ZhaoJ. ChangC. Comparative study on iron content detection by energy spectral CT and MRI in MDS patients.Front. Oncol.20211164694610.3389/fonc.2021.64694633828991
    [Google Scholar]
  65. AminK. MiletoA. KolokythasO. MRI for liver iron quantification: Concepts and current methods.Semin. Ultrasound CT MR202243436437010.1053/j.sult.2022.03.00635738822
    [Google Scholar]
  66. DuD. WuX. WangJ. ChenH. SongJ. LiuB. Impact of iron deposit on the accuracy of quantifying liver fat fraction using multi-material decomposition algorithm in dual-energy spectral computed tomography.J. Appl. Clin. Med. Phys.202122823624210.1002/acm2.1336834288379
    [Google Scholar]
  67. XuF. TangC. HuangY. LiangL. HuangF. YangG. PengP. Quantitative analysis of liver iron deposition based on dual-energy CT in thalassemia patients.Mediterr. J. Hematol. Infect. Dis.2023151e202302010.4084/MJHID.2023.02036908867
    [Google Scholar]
  68. Di CiaulaA. GarrutiG. FrühbeckG. De AngelisM. de BariO. WangD.Q.H. LammertF. PortincasaP. The role of diet in the pathogenesis of cholesterol gallstones.Curr. Med. Chem.201926193620363810.2174/092986732466617053008063628554328
    [Google Scholar]
  69. ChenA.L. LiuA.L. WangS. LiuJ.H. JuY. SunM.Y. LiuY.J. Detection of gallbladder stones by dual-energy spectral computed tomography imaging.World J. Gastroenterol.201521349993999810.3748/wjg.v21.i34.999326379404
    [Google Scholar]
  70. UyedaJ.W. RichardsonI.J. SodicksonA.D. Making the invisible visible: Improving conspicuity of noncalcified gallstones using dual-energy CT.Abdom. Radiol.201742122933293910.1007/s00261‑017‑1229‑x28660332
    [Google Scholar]
  71. YangC. ZhangS. JiaY. DuanH. MaG. ZhangX. YuY. HeT. Clinical application of dual-energy spectral computed tomography in detecting cholesterol gallstones from surrounding bile.Acad. Radiol.201724447848210.1016/j.acra.2016.10.00627916593
    [Google Scholar]
  72. KimJ.E. LeeJ.M. BaekJ.H. HanJ.K. ChoiB.I. Initial assessment of dual-energy CT in patients with gallstones or bile duct stones: Can virtual nonenhanced images replace true nonenhanced images?AJR Am. J. Roentgenol.2012198481782410.2214/AJR.11.697222451546
    [Google Scholar]
  73. BaeJ.S. LeeD.H. JooI. JeonS.K. HanJ.K. Utilization of virtual non-contrast images derived from dual-energy CT in evaluation of biliary stone disease: Virtual non-contrast image can replace true non-contrast image regarding biliary stone detection.Eur. J. Radiol.2019116344010.1016/j.ejrad.2019.04.00831153571
    [Google Scholar]
  74. SoesbeT.C. LewisM.A. XiY. BrowningT. AnanthakrishnanL. FieldingJ.R. LenkinskiR.E. LeyendeckerJ.R. A technique to identify isoattenuating gallstones with dual-layer spectral CT: An ex vivo phantom study.Radiology2019292240040610.1148/radiol.201919008331264945
    [Google Scholar]
  75. YinS.N. ChiJ. LiuL. DingN. JiY.D. YuanJ.M. Dual-energy CT to differentiate gallbladder polyps: Cholesterol versus adenomatous.Acta Radiol.202162214715410.1177/028418512091620232295387
    [Google Scholar]
  76. CorwinM.T. SiewertB. SheimanR.G. KaneR.A. Incidentally detected gallbladder polyps: is follow-up necessary?--Long-term clinical and US analysis of 346 patients.Radiology2011258127728210.1148/radiol.1010027320697115
    [Google Scholar]
  77. PedersenM.R. DamC. RafaelsenS.R. Ultrasound follow-up for gallbladder polyps less than 6 mm may not be necessary.Dan. Med. J.20125910A450323158888
    [Google Scholar]
  78. HudaF. LeBedisC.A. QureshiM.M. AndersonS.W. GuptaA. Acute cholecystitis: Diagnostic value of dual-energy CT-derived iodine map and low-keV virtual monoenergetic images.Abdom. Radiol.202146115125513310.1007/s00261‑021‑03202‑934223959
    [Google Scholar]
  79. ShangS. CaoQ. HanX. WangY. YinC. ZhaoL. Assessing liver hemodynamics in children with cholestatic cirrhosis by use of dual-energy spectral CT.AJR Am. J. Roentgenol.2020214366567010.2214/AJR.19.2203531967500
    [Google Scholar]
  80. YoonJ.H. ChangW. LeeE.S. LeeS.M. LeeJ.M. Double low-dose dual-energy liver CT in patients at high-risk of HCC.Invest. Radiol.202055634034810.1097/RLI.000000000000064331917765
    [Google Scholar]
  81. BaeJ.S. LeeJ.M. KimS.W. ParkS. HanS. YoonJ.H. JooI. HongH. Low-contrast-dose liver CT using low monoenergetic images with deep learning–based denoising for assessing hepatocellular carcinoma: A randomized controlled noninferiority trial.Eur. Radiol.20223364344435410.1007/s00330‑022‑09298‑x36576547
    [Google Scholar]
  82. KangH.J. LeeD.H. ParkS.J. HanJ.K. Virtual noncontrast images derived from dual-energy CT for assessment of hepatic steatosis in living liver donors.Eur. J. Radiol.202113910968710.1016/j.ejrad.2021.10968733836335
    [Google Scholar]
  83. ChoiM.H. LeeY.J. ChoiY.J. PakS. Dual-energy CT of the liver: True noncontrast vs. virtual noncontrast images derived from multiple phases for the diagnosis of fatty liver.Eur. J. Radiol.202114010974110.1016/j.ejrad.2021.10974133991971
    [Google Scholar]
  84. NadjiriJ. KaissisG. MeurerF. WeisF. LaugwitzK.L. StraeterA.S. MuenzelD. NoëlP.B. RummenyE.J. RasperM. Accuracy of calcium scoring calculated from contrast-enhanced coronary computed tomography angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data.PLoS One20181312e020858810.1371/journal.pone.020858830521612
    [Google Scholar]
  85. LinY.M. ChiouY.Y. WuM.H. HuangS.S. ShenS.H. Postablation assessment of hepatocellular carcinoma using dual-energy CT: Comparison of half versus standard iodine contrast medium.PLoS One2019147e021957710.1371/journal.pone.021957731287838
    [Google Scholar]
  86. DanielssonM. PerssonM. SjölinM. Photon-counting x-ray detectors for CT.Phys. Med. Biol.202166303TR0110.1088/1361‑6560/abc5a533113525
    [Google Scholar]
  87. RacineD. MergenV. ViryA. EberhardM. BecceF. RotzingerD.C. AlkadhiH. EulerA. Photon-counting detector CT with quantum iterative reconstruction.Invest. Radiol.202358424525210.1097/RLI.000000000000092536094810
    [Google Scholar]
  88. EsquivelA. FerreroA. MiletoA. BaffourF. HorstK. RajiahP.S. InoueA. LengS. McColloughC. FletcherJ.G. Photon-counting detector CT: Key points radiologists should know.Korean J. Radiol.202223985486510.3348/kjr.2022.037736047540
    [Google Scholar]
  89. JacobsenM.C. SchellingerhoutD. WoodC.A. TammE.P. GodoyM.C. SunJ. CodyD.D. Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: A phantom study.Radiology2018287122423410.1148/radiol.201717089629185902
    [Google Scholar]
  90. ChenY. ZhongJ. WangL. ShiX. ChangR. FanJ. JiangJ. XiaY. YanF. YaoW. ZhangH. Multivendor comparison of quantification accuracy of iodine concentration and attenuation measurements by dual-energy CT: A phantom study.AJR Am. J. Roentgenol.2022219582783910.2214/AJR.22.2775335674353
    [Google Scholar]
  91. JacobsenM.C. CressmanE.N.K. TammE.P. BaluyaD.L. DuanX. CodyD.D. SchellingerhoutD. LaymanR.R. Dual-energy CT: Lower limits of iodine detection and quantification.Radiology2019292241441910.1148/radiol.201918287031237496
    [Google Scholar]
  92. LiJ. ZhaoS. LingZ. LiD. JiaG. ZhaoC. LinX. DaiY. JiangH. WangS. Dual-energy computed tomography imaging in early-stage hepatocellular carcinoma: A preliminary study.Contrast Media Mol. Imaging202220221810.1155/2022/214634335069041
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056275595231208075930
Loading
/content/journals/cmir/10.2174/0115734056275595231208075930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test